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Executive Summary 
 

Deployment of solar photovoltaic (PV) power generation is growing rapidly in the United States. 

Utilities and system operators are increasingly conducting studies of the impact of PV on 

operations, including assessments of short-term variability and uncertainty. Consideration of the 

complex issues surrounding sub-hourly variability and forecasting of PV power output has still 

been somewhat limited because of the difficulty of creating realistic sub-hourly PV datasets and 

forecast errors for future scenarios with increased PV production. How utility operations should 

be changed to more economically integrate large amounts of solar PV power is an open question 

currently being considered by many utilities. This study develops a systematic framework for 

estimating the increase in operating costs due to uncertainty and variability in renewable 

resources, uses the framework to quantify the integration costs associated with sub-hourly solar 

power variability and uncertainty, and shows how changes in system operations may affect these 

costs. Toward this end, we present a statistical method for estimating the required balancing 

reserves to maintain system reliability along with a model for commitment and dispatch of the 

portfolio of thermal and renewable resources at different stages of system operations. We 

estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) 

forecast errors as the difference in production costs between a case with “realistic” PV (i.e., sub-

hourly solar variability and uncertainty are fully included in the modeling) and a case with “well 

behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly 

forecasted). In addition, we highlight current practices that allow utilities to compensate for the 

issues encountered at the sub-hourly time frame with increased levels of PV penetration. 

 

In this analysis we use the analytical framework to simulate utility operations with increasing 

deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the 

southwestern United States. In our analysis, we focus on three processes that are important in 

understanding the management of PV variability and uncertainty in power system operations. 

First, we represent the decisions made the day before the operating day through a DA 

commitment model that relies on imperfect DA forecasts of load and wind as well as PV 

generation. Second, we represent the decisions made by schedulers in the operating day through 

hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA 

schedules and online units can be redispatched using forecasts that are improved relative to DA 

forecasts, but still imperfect. Finally, we represent decisions within the operating hour by 

schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA 

and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) 

optimization model. This model creates a least-cost dispatch and commitment plan for the 

conventional generating units using forecasts and reserve requirements as inputs. We consider 

only the generation units and load of the utility in this analysis; we do not consider opportunities 

to trade power with neighboring utilities. We also do not consider provision of reserves from 

renewables or from demand-side options. 

 

We estimate dynamic reserve requirements in order to meet reliability requirements in the RT 

operations, considering the uncertainty and variability in load, solar PV, and wind resources. 

Balancing reserve requirements are based on the 2.5
th

 and 97.5
th

 percentile of 1-min deviations 

from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves 
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using a separate minute-by-minute simulation of deviations from the HA schedules in the 

operating year. In the simulations we assume that balancing reserves can be fully deployed in 

10 min. The minute-by-minute deviations account for HA forecasting errors and the actual 

variability of the load, wind, and solar generation. Using these minute-by-minute deviations and 

deployment of balancing reserves, we evaluate the impact of PV on system reliability through 

the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). 

Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a 

balancing area is able to balance supply and demand within a specific threshold. Compliance 

with the North American Electric Reliability Corporation (NERC) reliability standards requires 

that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance 

for 90% of the 10-min periods). The combination of representing DA forecast errors in the DA 

commitments, using 1-min PV data to simulate RT balancing, and estimates of reliability 

performance through the CPS2 metric, all factors that are important to operating systems with 

increasing amounts of PV, makes this study unique in its scope. 

 

 

Results 
 

We analyze the impact of distributed and utility-scale PV on the APS system based on projected 

conventional generation, load, and wind and PV resources in 2027. Two PV deployment levels 

are considered: low PV is based on the PV that APS includes in its 2012 Integrated Resource 

Plan (IRP) base case, and high PV is based on the PV penetration that APS includes in the 

expanded renewables case of the IRP. The low-PV case includes sufficient PV to meet 8.8% of 

the annual energy, and the high-PV case includes enough PV to meet 17.0% of the annual energy 

(prior to any curtailment of renewables). Both cases also consider wind penetration of 4.9% of 

annual energy. Based on existing practices at APS five of the eight coal plants are treated as 

must-run units that can dispatch between minimum and maximum generation, but they cannot be 

turned off. Similarly, nuclear units are always operated at full nameplate capacity. We find that 

the combination of must-run generation, inflexible nuclear operations, and large amounts of solar 

in the high-PV case leads to severe operational challenges during low-load and high solar periods 

under the assumption that the utility cannot trade power with neighboring utilities. For a high-PV 

case to be practical, some solution to these challenges will be necessary. We included a “flexible 

nuclear” case as one option for introducing flexibility during low-load and high solar periods. 

The impacts of this level of PV deployment under the assumption of constant nuclear operation 

in the low-PV and high-PV cases and the alternative flexible nuclear operation in the high-PV 

case are summarized in Table ES-1. 

 

The assumption of flexible nuclear operation in the high-PV flexible nuclear case (where all the 

nuclear units can operate below maximum output and can provide reserves) decreases the 

integration cost and greatly reduces the need to curtail renewables from almost 18% down to 

3.4% of available renewables. 
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Table ES-1.  Impact of PV in 2027 Using Base Assumptions  

 
 

Load-Wind  Net Load 

 
No PV  Low PV 

 
High PV 

(Const. Nucl.) 
High PV 

(Flex. Nucl.) 

      

PV nameplate capacity (MW-ac) 0  1,674 2,974 2,974 

Energy from PV (% annual demand) 0%  8.8% 14.3% 16.8% 

Renewable curtailment (% renewable energy) 0%  2.9% 17.8% 3.4% 

Maximum balancing reserve up (MW) 187  278 556 556 

Average balancing reserve up (MW) 132  171 241 241 

CPS2 score (must be >90) 96.1  95.8 92.6 92.6 

Integration Cost      

Balancing reserve cost ($/MWh-PV) N/A  1.61 1.88 1.11 

DA forecast error cost ($/MWh-PV) N/A  0.27 0.21 0.63 

Total PV integration cost ($/MWh-PV) N/A  1.88 3.77 1.74 

 

 

The addition of PV increases the variability and uncertainty between HA scheduling and RT 

operations. Additional balancing reserves are added in both the up and down direction to manage 

this uncertainty and variability. The peak and average requirement for balancing reserves in the 

up direction without PV, with low PV, and with high PV are summarized in Table ES-1, along 

with the estimated integration costs for low PV, high PV with constant nuclear operation, and 

high PV with flexible nuclear operation. The total integration cost is primarily due to the cost of 

holding resources in reserve during the HA scheduling that can then be deployed in RT to 

manage remaining uncertainty and variability (balancing reserve cost). The remaining portion of 

the costs (DA forecast error cost) is from redispatch of online generation, changes in UC within 

the operating day for peaking units, and imperfect UC decisions for other units based on 

imperfect forecasts between the DA and HA scheduling. 

 

On the basis of the RT simulations of minute-by-minute deviations from the HA schedule, we 

find that the balancing reserves based on the 2.5
th

 to 97.5
th

 percentile of deviations are sufficient 

to achieve a CPS2 score that exceeds NERC minimum standards of a CPS2 score of 90% 

(Table ES-1), though none of the cases achieve APS’s current practice of aiming to maintain a 

99% CPS2 score. The decrease in the CPS2 score, particularly in the high-PV scenario, indicates 

there is some degradation of CPS2 performance when balancing reserves requirements are based 

on the 2.5
th

 to 97.5
th

 percentile of deviations, an issue we address through sensitivity studies. 

 

We conduct an extensive sensitivity analysis of system cost and reliability, using the high-PV 

(Flex. Nucl.) scenario as a benchmark, under different assumptions about balancing reserves, 

system flexibility, fuel prices, and forecasting errors. For these sensitivities we find integration 

costs vary within the range of $1.0 to $4.4/MWh-PV (Figure ES-1). The majority of the 

integration cost is due to an increase in the cost of balancing reserves held during HA 

scheduling, whereas DA forecast errors continue to be a smaller contributor to integration costs. 

Figure ES-1 shows that changes in fuel prices and forecast assumptions for wind and load do 
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have an effect on integration costs, but the impacts are less pronounced compared to those for the 

other sensitivities, which are discussed in more detail below. 

 

In the sensitivities related to balancing reserves, we examine two options for increasing the CPS2 

performance with high PV penetration: (1) increase the amount of balancing reserve held in the 

HA or (2) increase the maximum rate of deployment (change from our initial assumption of full 

deployment in 10 min to full deployment in 5 min). Either option increases the CPS2 score to 

more than 95%, but both also increase the integration costs. There is clearly a trade-off between 

integration costs and the utility’s reliability level (Figure ES-2); the proper balance between the 

two will depend on the priorities of the utility. 

 

 

 

Figure ES-1.  PV Integration Cost Estimates for Sensitivity Cases Using the High-PV 
(2027) Scenario with Flexible Nuclear Operations as a Benchmark  
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Figure ES-2.  Tradeoff Between Balancing Performance (CPS2 Score for 
Net Load) and Integration Cost of PV 

 

 

On the basis of the sensitivities related to flexibility, we find that system flexibility is essential 

for minimizing integration costs. Flexibility is particularly important in this analysis because we 

assume that the utility absorbs all generation within its service territory (i.e., we assume that 

there are no opportunities to trade with neighboring utilities). In addition to the comparison of 

constant and flexible nuclear operations with high PV mentioned earlier, we show the impact of 

reduced system flexibility by reducing the capabilities of thermal generators to ramp from one 

hour to the next and minimizing curtailment of renewable energy. Renewables curtailment can 

be reduced to less than 1% by artificially introducing a large penalty for renewable curtailment 

into the UC/ED model. However, minimizing this curtailment changes the dispatch of thermal 

units and also results in an increase in the integration cost (Figure ES-1). Lower ramp rates of 

thermal units also increase the integration costs. 

 

To further highlight the importance of flexibility, we constructed a worst-case scenario in which 

limits to flexibility (including constant nuclear output, low ramp rates for other thermal 

generators, and penalties on renewables curtailment) and increased balancing reserve 

requirements were simultaneously assumed. In this worst case, the integration cost increases to 

$9.6/MWh and renewables curtailment exceeds 10% of available renewable generation (despite 

the penalties for renewable curtailment), and it also becomes challenging to meet the balancing 

reserve requirements with frequent occurrences of reserve shortfalls. This case is unrealistic 

given the combination of several conservative assumptions regarding system flexibility and the 

actual ability of the utility to trade with other utilities. However, the results do highlight the 

importance of finding buyers for excess power during times with high PV production or the need 

to increase flexibility from existing thermal power plants or other resources. 
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Limitations and Future Work 
 

This case study does have a number of limitations that should be considered in the examination 

of these conclusions. Simulations of future deployments of variable generation are always 

challenging because of the need to synthesize high-time resolution production and forecasts that 

reflect geographic diversity. The methods used in this study to synthesize 1-min PV production 

data are based on existing methods applied for wind power, but not otherwise applied to power 

from solar PV. Anomalies in the data may overstate short-term PV variability. Furthermore, the 

thermal plant characteristics were developed from publicly available datasets and likely differ 

from true plant performance. 

 

There are also limitations based on the simplifications used to model actual strategies and 

procedures used by utilities. For instance, the model does not fully reflect the flexibility to make 

recommitment decisions at any time between DA and HA scheduling. This may understate the 

flexibility available from the thermal generators. On the other hand, the revised dispatch and 

commitments in the HA were made with a single run of the optimization model over a 24-hr 

period based on the assumption that the HA forecasts are known. This modeling assumption may 

understate the costs of managing variability and uncertainty. We also did not include 

transmission constraints within the utility footprint. 

 

Another important limitation of this case study is that we did not model exchange with the 

broader Western Electricity Coordinating Council (WECC) area outside of the utility boundaries, 

an assumption that is likely to overstate the challenges with low-net-load periods, particularly if 

neighboring utilities are adding less renewables to their systems. These impacts could also be 

mitigated with the inclusion of APS in any of the proposed Energy Imbalance Markets (EIM) 

currently being examined in the Western Interconnection. This new sub-hourly real time energy 

market would provide access to more flexibility that might prevent significant amounts of 

renewables curtailment, and also reduce the costs associated with sub-hourly solar variability. In 

addition, the NERC Board of Trustees recently approved a new balancing standard that would 

replace the CPS2 with an alternative reliability metric. This new balancing standard may also 

alter the balancing reserve requirements in scenarios with high PV. Last, we did not remove any 

thermal generation capacity from the low-PV portfolio when the amount of PV was increased in 

the high-PV scenario, although PV is likely to have some capacity value. If refined estimates of 

the impact of PV on system operations, cost, and reliability are required, these limitations should 

be addressed. 

 

Overall, we only investigated a small subset of the potential future sources of system flexibility 

in this study. Additional sources for flexibility include demand side programs that shift load into 

low net-load periods or energy storage. Demand resources can also contribute to the provision of 

operating reserves. Another important source of flexibility not considered in this study is the 

potential provision of reserves from wind and utility-scale solar resources. As long as the utility 

can send a control signal to these resources they can provide operating reserves, particularly in 

the down direction. Contributions to system flexibility from demand resources and renewables 

may very well be easier to implement than flexible nuclear operations as investigated in this 

analysis. In future work, we therefore recommend exploring these additional sources of system 

flexibility. 
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In this study, we did not consider dynamic balancing reserves that change based on expected 

weather conditions. In particular, if probabilistic forecasts are available they could be used to 

ensure that there was low probability of clouds before reserves would be reduced. This would 

potentially decrease the balancing reserve requirements for PV and lower integration costs 

accordingly. Factoring weather forecasts into the dynamic estimation of balancing reserves 

represents an interesting direction for future work. Finally, the potential use of stochastic 

scheduling strategies that make direct use of probabilistic forecasts to commit and dispatch 

system resources is also an area of active research. In this case, the mathematical objective of the 

scheduling problem is to minimize operating cost over a range of forecast scenarios for 

renewable generation. Hence, balancing reserves are scheduled implicitly rather than imposed as 

explicit reserve requirements. The potential benefits of stochastic scheduling for system cost and 

reliability is also an area we want to explore in future work. 
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1 Introduction 
 

Solar power is increasingly becoming an important contributor to global electricity systems, with 

more than 95 GW of photovoltaic (PV) power installed globally at the end of 2012 (IEA 2013). 

This growth in PV capacity is expected to be sustained in the United States through compliance 

with state Renewables Portfolio Standards (RPS) that mandate a certain percentage of electricity 

be produced from renewable sources and growth in customer-sited PV. Because solar PV power 

output is both variable and uncertain, there are concerns about how its inclusion in system 

operations in significant amounts affects traditional power systems operations. Solar PV power 

follows a very clear diurnal cycle because of the changing position of the sun and, with no 

intrinsic storage capability, is not available to supply power during hours of darkness. While the 

expected power output during the day, assuming a clear sky, can be accurately calculated in 

advance, instances of clouds moving over a PV array lead to short-term variability in power 

output and imperfect forecasts. Large solar installations on the megawatt scale are currently 

being added to the transmission system; however, a large number of solar installations are also 

being introduced at the distribution level, on residential and commercial rooftops. The impact of 

this difference in PV siting can be seen in both the expected variability and uncertainty. In 

general, aggregated distributed PV is less variable than utility-scale installations for the same 

capacity (Marcos et al. 2011a; Mills et al. 2011). This is because the same amount of capacity is 

spread over a larger geographic area, and thus localized weather conditions cannot affect as 

much of the installed capacity simultaneously. However, most distributed PV is “behind the 

meter” in that the utility is unaware of its output and sees its impact only through reduced 

demand. This can cause issues with the integration of distributed PV because of increased load-

forecasting errors caused by the utility being unaware of the magnitude of the distributed PV 

presence. 

 

To understand the impacts of this increase in solar PV power production on electricity systems, 

simulations of power system operations with high penetrations, or grid integration studies, are 

often conducted by utilities and independent system operators (ISOs). The number of grid 

integration studies that include solar PV power is growing (GE Energy 2010; Ma et al. 2011; 

Black & Veatch 2012a; CAISO 2010; Navigant Consulting et al. 2011). However, consideration 

of the complex issues surrounding sub-hourly variability and forecasting of PV power output has 

still been somewhat limited because of the difficulty of creating realistic sub-hourly PV datasets 

and forecast errors for future scenarios with increased PV production. Important parts of power 

system operations affected by sub-hourly variability and uncertainty include regulation reserves 

requirements and sub-hourly dispatch. How these operations can be changed to more 

economically integrate large amounts of solar PV power is an open question currently being 

considered by many utilities. 

 

The goals of this work are to (1) develop a systematic framework for analyzing implications for 

operating procedures and corresponding increases in operating costs due to uncertainty and 

variability in renewable resources and (2) use the framework to quantify the integration costs and 

reliability implications associated with sub-hourly solar power variability and uncertainty and to 

show how changes in system operations may affect these costs. We estimate the costs of sub-

hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the 
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difference in production costs between a case in which sub-hourly solar variability and 

uncertainty are fully integrated into the analysis, and the case in which these factors are ignored. 

In addition, we highlight current practices that allow utilities to compensate for the issues 

encountered at the sub-hourly time frame with increased levels of PV penetration. Throughout 

the report, we highlight instances in which the approach used in this study differs from or is 

similar to those in previous studies. 

 

We chose Arizona Public Service Company (APS) as an example utility for a case study. APS is 

an affiliate of Pinnacle West Capital Corporation and the largest utility in the state of Arizona. 

APS serves more than 1.1 million customers covering a service territory of almost 35,000 square 

miles. As a vertically integrated utility, APS has more than 8,600 MW of generation, 5,300 miles 

of transmission lines, and 28,000 miles of distribution lines. APS has excellent solar resources 

located within its service territory and is expecting a large increase in solar power installations in 

the near future, making it a natural choice for a test system. 

 

In order to analyze the impact of solar variability and uncertainty, we utilize a unit commitment 

(UC) and economic dispatch (ED) model of power system operations with renewable energy 

(Wang et al. 2011; Zhou et al. 2012; Botterud et al. 2013). The load and wind and solar 

generation datasets for the APS system consist of time series of the electricity demand, wind 

power output, and solar power output at a 1-min level for the area and time period under study. 

In order to separate the impacts of the solar variability and uncertainty, this analysis also includes 

forecasts of the wind and solar power output at different time frames relevant for system 

operations, here assumed to be DA and hour-ahead (HA). These datasets rely heavily on wind 

and solar profiles developed as part of the Western Wind and Solar Integration Study (WWSIS) 

(Potter et al. 2008),
1
 with selected locations chosen to model expected installations in the APS 

service territory. In addition, 1-min solar data were synthesized by using an approach that starts 

with hourly satellite-derived solar data for each site and then adds sub-hourly variability. The 

method of synthesizing sub-hourly variability accounts for the correlation of variability between 

sites on sub-hourly time scales and the amount of sub-hourly variability that would be expected 

for a particular level of cloudiness. 

 

Using the models and data described above, we then identify changes to existing procedures that 

could allow APS to maintain compliance with reliability standards while increasing the amount 

of solar PV installed in its system. The primary changes we focus on in this analysis are 

increases in balancing reserves and revised dispatch within the operating day. 

 

The analysis quantifies the amount of additional balancing reserves that should be held in the DA 

and HA scheduling to ensure that adequate resources are available to be deployed in real time 

(RT), even with increased forecast errors and increased variability. We also simulate the 

redispatch of generating units between DA and HA scheduling; a method of managing forecast 

errors as the uncertainty in the forecasts is reduced closer to the operating hour. We assess the 

                                                 
1
 The WWSIS Phase 1 wind dataset uses a common method to join together individual 3-day simulations for each 

wind site. This method does not have a severe effect on a small number of sites, but may lead to an overstatement 

of wind variability every 3 days at 16:00 MST. Since this study uses only 21 wind sites, we do not expect this 

problem to have a significant impact on the sub-hour variability of wind. Additional details on this issue are 

described at www.nrel.gov/electricity/transmission/pdfs/western_dataset_irregularity.pdf. 
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cost implications of these changes to the APS procedures by comparing the costs of operating the 

system with all these changes with the costs that would have been incurred had these factors 

been ignored. We rely on various sensitivity scenarios to examine how sensitive these costs and 

the performance of the APS system is to various assumptions about balancing reserves, 

capabilities of thermal generating units, and the level of solar PV power deployment. 

 

The remainder of this report is structured as follows. Section 2 provides a high-level overview of 

the current practices at APS based on discussions between the authors and representatives from 

the utility. Section 3 describes the analytical framework developed in this study to create a more 

simplified model of APS operations to quantitatively examine the impacts of increased solar PV 

and the effectiveness of various responses available to APS. Section 4 describes the dataset and 

assumptions used to simulate the APS system. The results of the case study of the APS system 

using this model and dataset are presented in Section 5. In Section 6 several sensitivity cases are 

presented to better understand the potential impacts of PV on utility system operations. Section 7 

discusses the implications of the results and the sensitivity cases and provides conclusions and 

recommendations for additional research. The appendices describe the model, datasets, and 

intermediate results in more detail. 
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2 Background: Existing Utility Practices and Changes to 
Those Practices with Increased PV Deployment 

 

In order to better understand current utility practices, the authors met with APS representatives 

from functional areas, including resource planning, generation scheduling, and transmission 

system operations. Although our case study focus is on the APS system, other vertically 

integrated utilities with a large expansion of renewable energy are likely to use similar utility 

practices and face the same types of operational challenges related to the uncertainty and 

variability in renewable resources. 

 

 

2.1 Resource Planners 
 

APS recently completed an integrated resource plan (APS 2012) that forecasted needs out to 

2027 and examined several candidate portfolios to meet its generation needs. Based in part on 

satisfying the Arizona RPS requirement, the base case resource portfolio includes more than 

1,400 MW of utility-owned and customer-sited PV by 2020 and more than 1,600 MW by 2027 

(roughly a 9% PV penetration by 2027 on an energy basis). An expanded renewables portfolio 

also examined by APS would include a further 1,300 MW of utility-owned PV by 2027 for a 

total of more than 2,900 MW of PV on the APS system (roughly a 17% PV penetration by 2027 

on an energy basis). These portfolios would also include more than 250 MW of wind in 2020 and 

more than 650 MW of wind by 2027 (roughly a 5% penetration of wind by 2027). The total 

resources in each candidate portfolio are sufficient to meet the forecasted peak demand 

accounting for the relatively low peak capacity contribution of PV and wind. The future capacity 

plan provided in the integrated resource plan (APS 2012) includes the company’s projections of 

both capacity retirements and capacity additions between 2012 and 2027. 

 

The resource planners examined the performance of each candidate portfolio using a detailed 

production cost model called PROMOD IV (from Ventyx), which simulates the dispatch of the 

APS portfolio along with the broader Western Electricity Coordinating Council (WECC) market. 

The production cost model used in the analysis accounts for hourly variation in load and wind 

and solar generation profiles along with the operational cost related to starting and stopping 

power plants when needed (though not the wear-and-tear costs associated with starting and 

stopping units). The production cost model does not directly account for DA or short-term 

uncertainty or sub-hourly variability of load, wind, and PV. To compensate for the lack of 

representation of those factors in the production cost model results, APS adds an integration cost 

to the cost of portfolios depending on the amount of renewable energy included in the portfolio. 

Our analysis of integration costs is structured to provide more detail into the magnitude and 

drivers of this type of integration cost. One factor that will make integration relatively easier in 

the future is that APS expects portfolios to include a significant amount of new, flexible aero-

derivative gas turbine power plants (GE LMS 100 units). 
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2.2 System Scheduling 
 

APS schedulers create generation plans for generating units available to APS to meet expected 

load and operating reserves less the amount of energy expected from nondispatchable renewables 

generation. In addition, these schedulers try to identify opportunities to buy power from and sell 

power to neighboring utilities when economically advantageous. The scheduling is split between 

a DA trading desk and a RT trading desk. The DA desk completes the plan for the next operating 

day by 3 p.m., at which time scheduling is transitioned to the RT desk for the remainder of the 

day through the operating day. Since PV power output is considered to be nondispatchable it is 

not currently considered in the DA scheduling process. This is especially true for distributed 

solar PV, since there is little visibility into its output available to the system operator. 

 

 

2.2.1 DA Schedulers 
 

The DA plan is used to make commitments of generation, particularly large thermal units with 

long start-up times, and to nominate the amount of natural gas that is expected to be consumed 

by the gas-fired generators. The DA desk uses forecasts of load to estimate how much demand 

needs to be served. Currently, APS receives wind forecasts for the wind generation assets owned 

by APS from an external wind forecast vendor. The planned solar thermal plant with thermal 

storage will also provide APS with forecasts. APS does not yet use a solar PV forecast in its DA 

scheduling. In addition, APS uses computer asset optimization software that includes the 

operating characteristics of its power plants to assist in the creation of DA plans.  

Trades for power occur through bilateral agreements with power marketers, other generators, or 

other utilities in the WECC. These trades occur over the Intercontinental Exchange (ICE) trading 

platform. In addition, APS is increasingly participating in the California Independent System 

Operator (CAISO) DA market, which has a pricing node at Palo Verde in Arizona.  

Before the DA plan is finalized, the DA schedulers are provided an estimate of the amount of 

contingency reserves that APS is required to maintain during the operating day. This amount is 

determined per agreement with the Southwest Reserve Sharing Group using a formula that 

accounts for each member’s hourly loads, purchase and sale transactions, and thermal 

generation, at least 50% of which must be held as spinning reserve. APS also maintains a 

relatively constant amount of regulating reserves, no less than 1.5% of anticipated load, and 

usually between 30 – 80 MW. Aside from these operating reserves, the DA desk factors in a 

slight buffer of additional generating capacity that is not otherwise committed in case it is needed 

during RT. Normally APS includes a reserve margin of 7% of demand, or a reserve margin of 

9% on warm days, in the DA schedule. This amount is equivalent to the amount of contingency 

reserve plus the regulating reserve, though it is adjusted based on experience and operator 

judgment. 
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2.2.2 RT Schedulers 
 

At the close of the DA plan, responsibility for implementation and adjustment to the plan is 

transitioned to the RT schedulers. The RT desk uses the obligations from the DA plan and 

assessments of the conditions throughout the operating day to make adjustments. These 

adjustments may include making additional bilateral trades with other utilities, changing the 

timing or need for APS power plants being turned on or off, and changing the power plant 

dispatch. The RT desk is constantly monitoring the actual load, generating unit capacity and 

dispatch levels, reserve amounts and obligations, and renewable production throughout the 

operating day.  

 

Because WECC scheduling rules between balancing areas are currently based on hourly 

schedules, the RT desk finalizes schedules over the APS interties at 30 min prior to the start of 

the operating hour. Hourly schedules in WECC include a ramp between hours that begins 10 min 

prior to the start of the operating hour and ends after the first 10 min in the operating hour. The 

RT desk can continue to call on resources internal to APS within the operating hour as needed 

(including starting quick-start units), but trades between APS and other regions are effectively 

unavailable except for under more extreme circumstances. 

 

 

2.3 Transmission System Operators 
 

The transmission system operators ensure the APS grid is operated in a reliable manner by 

monitoring power flows on the transmission system, voltages, and reserve levels. In addition, the 

system operators use an automated energy management system (EMS) to send signals to 

generation enabled with automatic generation control (AGC) to correct for any remaining 

imbalances between the generation levels set by the RT desk and the actual load (i.e., 

regulation). APS indicates that nearly all its generation assets can participate in AGC except for 

large inflexible power plants that are manually scheduled. 

 

In case of an unexpected loss of generation or transmission (i.e., a contingency), the system 

operators deploy contingency reserves from APS and call on available resources from a 

contingency reserve sharing group if needed. The system operators try to ensure that contingency 

reserves are not used unless an event occurs. APS faces penalties from the reserve sharing group 

if the APS contingency reserve obligation is not maintained on average over each operating hour. 

 

APS operators are obligated to meet several North American Electric Reliability Corporation 

(NERC) reliability standards including three related to balancing the APS system.
2
 At any 

instant, the Area Control Error (ACE) measures the degree to which APS system operators are 

able to maintain a balance between load and generation. The NERC standards rely in part on the 

                                                 
2
 The NERC Board of Trustees recently approved a new balancing standard (BAL-001-2 - Real Power Balancing 

Control Standard) which replaces the CPS2 score mentioned here with a new metric based on the Balancing 

Authority ACE Limit or BAAL). The new standard changes the balancing requirements in a way that makes it 

more important for a BA to correct deviations that contribute to interconnection-wide imbalances and less 

important to correct for deviations that help mitigate interconnection-wide imbalances. It also expands the 

averaging period from 10 minutes in the CPS2 metric to 30 minutes.  



Integrating Solar PV into Utility System Operations 

8 

ACE and are known as Control Performance Standard (CPS) 1, CPS2, and Disturbance Control 

Standard (DCS). CPS1 monitors the degree to which ACE at APS coincides (both in terms of 

timing and the direction of imbalance) with aggregate imbalances in the larger interconnection 

on a minute-by-minute basis. CPS2 monitors how frequently the 10-min average ACE at APS 

exceeds a threshold called the utility’s L10 parameter, which is currently about 46 MW for APS. 

DCS sets the rate by which APS needs to recover from a large event such as the sudden loss of a 

generator and return the system to normal operation. NERC standards specify minimum 

performance standards, and APS tries to consistently exceed these minimum standards. For 

instance, APS aims to keep the 10-min average ACE within the minimum L10 threshold 99% of 

the time within the month, even though the NERC CPS2 standard requires that the ACE must be 

within L10 at least 90% of the time within a month. Similarly, other balancing areas in WECC 

maintained their ACE to within their respective minimum L10 threshold level 96 to 98% of the 

time between 2004 and 2009 (Neve 2013). 

 

 

2.4 Expected Changes with Increased PV Generation 
 

The introduction of large amounts of variable renewable generation (here defined as wind and 

solar power) will require changes in the procedures and processes used to operate the system. In 

particular, current practices account for the uncertainty and variability of the load; as solar and 

wind output is increasingly added to the portfolio, the uncertainty and variability from the 

variable generators will also need to be managed. Forecasts of wind and solar output will need to 

be integrated into the DA planning along with the load forecasts. Because these forecasts are not 

perfect, the economic dispatch process used by the RT desk will need to increasingly adjust the 

output levels of plants during the operating day. These adjustments will also need to rely on a 

combination of the short-term forecasts of wind and solar power output and the short-term load 

forecasts. With increased PV, schedulers will likely need to increase the amount of generation 

available within the operating hour to adequately compensate for deviations from the HA 

schedules (GE 2010; Ma et al. 2011; Black & Veatch 2012a; CAISO 2010; Navigant 2011). 

Increased regulation reserves that are used to account for variability around the schedule in the  

4-sec to 5-min time scale will be increasingly deployed and may also need to be increased 

(CAISO 2010; Navigant 2011; Ma et al. 2011). 
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3 Analytical Framework for Modeling the Impact of Increased 
PV 

 

We develop a simplified model of the process described in the previous section to simulate the 

utility operations with increasing deployment of PV. In our analysis, we focus on three processes 

that are important to understanding the management of PV variability and uncertainty in power 

system operations (Figure 1). First, we represent the decisions made by the DA desk as the DA 

commitment. Second, we represent the decisions made by the RT desk prior to the close of the 

RT dispatch as the HA scheduling. Finally, we represent decisions made by the RT desk and 

transmission system operators after the close of the RT market as RT balancing. We simulate the 

DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch 

(ED) optimization model. This model creates a least-cost dispatch and commitment plan for the 

conventional generating units using forecasts and reserve requirements as inputs. Like system 

schedulers must do, we develop a method to estimate requirements for reserves that are held in 

the DA and HA scheduling process. These reserve requirements are chosen with the aim of 

maintaining sufficient reliability to meet NERC requirements during RT operations. We simulate 

RT balancing using a separate minute-by-minute simulation based on deviations from the HA 

schedules. The minute-by-minute deviations account for HA forecasting errors and the actual 

variability of the load, and wind and solar generation. Using these minute-by-minute deviations, 

we calculate the resulting CPS2 performance for each scenario to evaluate the impact of PV and 

the choice of reserve requirements on system reliability. The different parts of the analytical 

framework are discussed in further detail in the sections below. 

 

 

 

 1.  Overview of Main Steps in Analytical Framework 
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3.1 Operating Reserve Requirements 
 

In addition to balancing supply and demand in each hour during the DA and HA scheduling, the 

model must also meet operating reserve requirements. The operating reserves in the model 

comprise two types of reserves: contingency reserves and balancing reserves. The deployment of 

contingency reserves to recover from unexpected events, such as the sudden loss of a large 

conventional power plant, is not explicitly modeled in this analysis. Instead, we require that the 

contingency reserve requirement must be met at all times (DA, HA, and RT). As in common 

utility practice, half of the contingency reserve requirement can be met by non-spinning 

resources, while the remaining contingency reserves must be met by spinning resources. 

 

The balancing reserves are constraints that must be met in the DA and HA scheduling. In 

contrast to contingency reserves, we assume that balancing reserves are deployed in RT to 

manage minute-by-minute deviations from the HA schedule, as described further in the section 

on RT dispatch.
3
 The amount of balancing reserves available in each hour is based on a set of 

rules that dynamically change the balancing reserves depending on conditions.
4
 We use these 

rules to determine how much to increase the balancing reserves beyond what is needed for the 

load alone as more wind and PV generation is added to the mix of generating resources. We 

develop the rules by examining the magnitude of 1-min deviations from the HA schedule, 

conditioned on either the hour of the day (in the case of load), the scheduled wind generation 

level (in the case of wind), or the clear sky solar production level (in the case of PV). We 

determine the amount of balancing reserves required in the up direction and the down direction 

based on the magnitude of the 2.5th percentile and 97.5th percentile of deviations for the 

particular conditions, as described in Table 1. These percentiles are an initial starting point for 

the balancing reserve rules that are informed by similar assumptions used in a wind integration 

study for the Southwest Power Pool (CRA 2010). Based on the results, we evaluate alternative 

choices of percentiles and the tradeoffs between increased balancing reserves and increased 

operating costs. Our approach of establishing balancing reserve rules based on 1-min deviations 

from schedules is somewhat similar to the approach developed by PNNL and used in a variety of 

wind and solar integration studies (e.g., Makarov et al. 2009; Navigant Consulting et al. 2011). 

The solar integration study conducted by Black & Veatch (2012a) focused on CPS2 compliance 

and was therefore able to use 10-min data to estimate reserve requirements. The reserve 

                                                 
3
 Throughout this document we use the generic term balancing reserves to refer to resources held in the HA to 

manage deviations from the HA schedule. These reserves can be deployed within the operating hour through a 

combination of manual instructions from schedulers/operators or through automatic generation control. In this 

way balancing reserves encompasses the more technical and specific function called regulating reserves (which 

generally refers to the resources that are dispatched based on automatic generation control to manage very short 

term deviations). But balancing reserves and regulating reserves are not identical, since we expect that much of 

the within-hour deployment of balancing reserves could be done through manual dispatch instructions. Similarly, 

balancing reserves encompasses load following within the operating hour. 
4
 Balancing reserves used in this study are called dynamic because the amount held in the DA and HA processes 

depends on expected conditions. In particular, the amount of balancing reserves varies depending on the hour of 

day (for the contribution of load to the balancing reserve requirement), the position of the sun and the expected 

solar production, and the expected wind production level. Other solar integration studies vary reserve 

requirements by the season and whether it is night or day (Black & Veatch, 2012a) or by the season and hour of 

day (Navigant Consulting et al. 2011). Dynamic balancing reserves requirements are commonly used in wind 

integration studies (e.g., EnerNex Corp. 2010). 
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requirements in the Black & Veatch study vary depending on whether it is daytime and the 

month of the year.
5
 

 

After setting these rules, we make a further adjustment to the balancing reserve requirements 

called the feasibility check, as detailed in Table 1. This feasibility check ensures that reserves are 

held to prepare only for situations that might actually occur. For example, if the HA schedule for 

wind is 75 MW and the 2.5th percentile deviation (i.e., a large drop in wind production relative 

to the HA schedule) is 100 MW, then it only makes sense to hold at most 75 MW of balancing 

reserves for wind. While the initial balancing reserve level would be 100 MW, we revise the 

balancing reserve for that particular hour downward to 75 MW after the feasibility check. We 

apply this feasibility check to both PV and wind generation. The feasibility check accounts for 

the minimum feasible generation levels (0 MW) and the maximum feasible generation level (the 

wind nameplate capacity in the case of wind and the highest PV output that could occur given 

the time of day in the case of PV). 

 

 
Table 1.  Method Used to Create Balancing Reserve Rules for Load and Wind and PVGeneration 

Resource Conditional 

Magnitude of Balancing 
Reserves for Each 

Condition 

 
Adjustments from Feasibility Check 

 
Maximum Increase Maximum Decrease 

     
Load Hour of the day 2.5th to 97.5th 

percentile of minute-by-
minute deviations from 
HA load schedule by 
hour of day 

None None 

     
Wind HA schedule for 

wind as a fraction 
of wind nameplate 
capacity (divided 
into 20 equal 
segments) 

2.5th to 97.5th 
percentile of minute-by-
minute deviations from 
HA wind schedule for 
particular wind 
production level 
segment 

HA schedule for wind 
plus the balancing 
reserve up for wind must 
be less than wind 
nameplate capacity. 

HA schedule for wind 
less the balancing 
reserve down for wind 
must be greater than 0 
MW. 

     
PV Clear sky 

production as 
fraction of 
nameplate capacity 
(divided into 20 
equal segments) 

2.5th to 97.5th 
percentile of minute-by-
minute deviations from 
HA PV schedule for 
clear sky PV production 
segment 

HA schedule for PV plus 
balancing reserve up for 
PV must be less than the 
highest expected output 
for current clear sky 
conditions. 

HA PV schedule less 
the balancing reserve 
down must be greater 
than 0 MW. 

 

 

We first develop these balancing rules based on the datasets from a 2004 weather year. We then 

apply these balancing rules to simulations using datasets from a 2005 weather year. This 

approach accounts for the fact that the utility will not know ahead of time what sort of deviations 

to expect in RT from the HA schedules, but it can use observed deviations from the previous 

                                                 
5
 In addition, the Black & Veatch study defines the HA schedule as flat through the hour without a 20-min ramp 

between hours (starting 10 min before the start of the operating hour and ending 10 min after the start of the 

operating hour).  
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year to develop rules that can be applied in the current year. The Electricity Reliability Council 

of Texas (ERCOT) uses a similar approach of measuring deviations of wind generation from the 

schedule based on a previous time period to set the regulation reserve and non-spinning reserve 

rules for the current time period (ERCOT 2011).
6
 

 

We assume that the balancing reserves for the HA schedule are also held during the DA 

scheduling.
7
 In any particular hour we calculate the total balancing reserves as the on the root 

mean square of the load and wind balancing reserves or the load, wind, and PV reserves.
8
 We 

assume the balancing reserves are met with spinning resources that can be fully deployed in 

10 min.
9
 The operating reserves imposed on the DA and HA scheduling in this study are 

summarized in Table 2. 

 

 
Table 2.  Operating Reserve Categories Used in DA and HA Scheduling 

 
Reserves in 
Scheduling Spinning (upward) 

Non-spinning 
(upward) 

Spinning 
(downward) Notes 

     

Balancing     
      

      
  Values picked to maintain CPS2 score 

with or without PV  

     

Contingency            Values do not change in this study, 

depend only on current rules. 

     

Total     
           

           
   

 

 

  

                                                 
6
 As discussed later, we similarly recommend that APS and other utilities begin, if they are already not doing so, 

measuring and recording the actual deviations experienced in their systems in order to develop and refine 

balancing reserve rules that can help manage increased wind and PV penetration.  
7
  This implies that the balancing reserves used in the HA will be known for the same hour during the DA 

commitment, which in some cases is not possible. It is not an issue with regard to the estimate of the balancing 

reserves needed for load because the balancing reserve rules for load only depend on the hour of the day. It is also 

not much of a simplification for PV because PV balancing reserve rules are based on the clear sky solar 

production (which is known a day ahead). We do, however, make one modification to the reserve rules for PV: 

we ensure the reserves for PV never assume negative PV production or PV production far above the clear sky 

production. The adjustments that are made to the reserve rules for PV in HA scheduling are similarly assumed to 

be known in the DA scheduling. Finally, the assumption that the HA reserves requirements are known in the DA 

scheduling is a simplification for wind because the reserve requirements are contingent on the HA schedule for 

wind generation. We assume these reserves will be known in the DA scheduling even though the DA forecast for 

wind may differ from the HA forecast.  
8
 The use of the root mean square of the load and wind and PV reserves is based on the assumption that deviations 

are independent. This assumption is used to generate the total balancing reserves for the net load and is then 

validated with a minute-by-minute simulation of the total balancing reserves to manage the net-load. 
9
 Analysis of 1-min deviations indicated that many of the deployments of balancing reserves required full 

deployment in a short amount of time. However, in one of the cases in Section 6 balancing reserves were 

increases such that they could manage more of the extreme deviations. In this case, analysis of the more extreme 

1-min deviations found not all of the reserves needed to be deployed in 10-min so a portion of the balancing 

reserves was met by non-spinning reserves. Non-spinning reserves are assumed to be available only after 10-min. 

This particular case is described further in Section 6. 
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3.2 DA Commitment 
 

Earlier we described how schedulers at APS need to determine which thermal units will be 

turned on or off for the next operating day. We simulate these DA commitment decisions using a 

UC model with unit-specific constraints. These decisions are based on imperfect DA forecasts of 

PV and wind generation, load, and operating reserve requirements (Table 2). The objective of the 

DA commitment is to minimize the total cost of meeting the demand and operating reserves for 

the next day. The UC model is based on previous work on system operations with a large 

penetration of wind power, which was conducted at Argonne National Laboratory (Wang et al. 

2011; Zhou et al. 2012; Botterud et al. 2013). The UC problem is a mixed-integer-linear program 

(MILP) problem, which we solve with the CPLEX solver. A brief overview of the model is 

provided below, and a full mathematical description is given in Appendix C. 

 

One of the largest simplifications in this analysis is that we assume that the utility uses its 

generation to meet its loads and does not trade with other suppliers in WECC. Using this 

assumption we effectively treat the utility as an isolated system that must have the capabilities to 

manage all the uncertainty and variability imposed by the load and wind and solar generation 

without being able to utilize flexibility from elsewhere in the WECC system. As compared to the 

actual operation of APS today, described earlier, this is a very conservative assumption that tends 

to overstate the challenges and costs with integrating PV into the system. A further simplification 

in the model relative to actual practices for APS is that we assume that this commitment decision 

is binding at the DA scheduling stage for all units except the ones designated to be peaking 

plants (mainly combustion turbines). Again, this is a conservative assumption relative to current 

practices at APS, because the RT desk is constantly monitoring the need for units to be started or 

stopped within the operating day, well before the actual operating hour. This rescheduling may 

also involve units with longer start-up times such as combined cycle plants. However, we do not 

have access to intra-day forecasts and do therefore only consider re-scheduling of peaking plants 

based on HA forecasts in this study. 

 

The objective of the optimization model is to minimize the total cost of meeting the demand for 

the next day. The operating costs consist of fuel costs and start-up costs for thermal generators. 

The model has an hourly time resolution, and the optimization is done over a 24-hr time period. 

Solar PV, wind, and load are represented in the UC model with their predicted values. The sub-

hourly impact of PV is captured by the balancing reserve portion of the operating reserve 

requirements described above, and imposed as reserve constraints in the UC model. At a high 

level, the objective function and main constraints can be expressed as follows: 

 

Objective Function  
 

Minimize (total cost over 24 hr) = 
   

∑{                                                                       } 
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Main Constraints 
 

(1) Load-generation balance for all hours, t: 
 

 (                    )                                                
 

(2) PV dispatch for all hours, t:  
 

                                       
                                                      

 

(3) Wind dispatch for all hours, t: 
 

                                      
 

(4) Spinning and non-spinning reserve up balance for all hours, t: 
 

 (                                      )  (                    )           
      

 

 (                                      )  (                    )           
   

 

(5) Spinning reserve down balance 
 

 (                                        )  (                      )      
        

 

(6) Other UC constraints for thermal plants include 
 

  min and max generation, block-wise heat rate curves, max ramp rates, and min up and down times.  

 

The objective function contains penalties for unserved load and unmet operating reserve targets. 

In the case study, we set these penalties to high levels to avoid a situation in which the model 

finds the costs to be lower if the load was not served or operating reserve targets were not met 

and instead a penalty was paid. We want to avoid this situation because the RT dispatch 

simulation assumes that contingency and balancing reserves are fully met in the DA and HA 

scheduling. As a result of the high penalties, the load is always met in this study and the 

unserved load in constraint (1) is therefore always zero. Furthermore, the load is considered 

inflexible and does not respond to prices. This is a conservative assumption, since it is not 

unlikely that in a future scenario with a smarter grid the demand-side would become more 

flexible and capable or responding to price signals in the market. However, this important source 

of system flexibility is not considered in this study. 

 

Constraints (2) and (3) reflect our assumption that solar PV and wind generation can be curtailed, 

if this is the least-cost solution for the system. However, curtailment of variable generation is 

limited to wind and utility-scale PV installations, because we assume that system operators have 

no ability to control or communicate with customer-sited distributed PV.  

 

The operating reserves are split into spinning and non-spinning reserves, as shown in constraints 

(4) and (5), and are a function of the contingency and balancing reserve requirements (Table 2). 
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The model currently assumes that all operating reserves have to be provided by thermal units 

within the system. In other words, we do not consider potential contributions to operating 

reserves from responsive demand resources, solar PV, wind, and imports from outside the 

balancing authority (BA). Demand resources already provide operating reserves in several 

markets, and renewable resources could also provide reserves, particularly in the down direction. 

These alternative resources may be able to provide reserves in a more cost-efficient manner, but 

a requirement is that they can respond continuously to the dispatch of BR in real-time to balance 

the renewables in the system, which is different from current contingency reserves which are 

rarely called upon. We have left for future work a more thorough investigation of these important 

issues, which may enlarge the pool of reserves and increase system flexibility. Hence, the 

assumption that only thermal resources can provide reserves is also conservative and is likely to 

underestimate the availability of reserves in a future system. However, in the case study we do 

consider in some simulations the possibility that nuclear plants can be dispatched down and 

provide reserves in both directions. Flexible dispatch and reserve provision from nuclear plants 

would increase the system flexibility substantially, as discussed in the case study, but deviates 

from current operational procedures at APS. Another limitation is that we do not consider the 

impact of transmission constraints internal to the utility system in scheduling and dispatch. After 

discussions with APS, it was clear that current transmission expansion plans are likely to resolve 

current and potential future bottlenecks in the system. The transmission network internal to the 

APS system should therefore have limited impact on the optimal scheduling and dispatch. We 

assume the same is true for this case study. 

 

 

3.3 HA Scheduling 
 

After the DA commitment decisions are made, we assume that the utility will update its schedule 

in the HA time frame based on the updated HA forecasts of PV, wind, and load. The HA forecast 

is generally more accurate than the DA forecast. The HA schedule makes adjustments in the 

commitment decisions for peaking units as needed. We use the same optimization model as in 

the DA stage to re-commit these quick-start units at the HA stage. In this HA run the 

commitment status of all units except the quick-start units is fixed from the DA stage. The final 

HA schedules will end up being more costly than they would have been if load, wind, and PV 

forecasts were the same at the DA stage as at the HA stage. The higher costs will be due to HA 

decisions that include re-dispatching generation, turning on quick-start units that would have 

otherwise not be needed, or in extreme cases not meeting reserve requirements. The implications 

for RT reliability are investigated through the analysis of CPS2 scores in the RT dispatch, as 

discussed below. 

 

 

3.4 RT Dispatch 
 

The unit-by-unit commitment and dispatch simulation in the previously described model stops 

with the HA scheduling. From there, we developed a program (written in the Python language) 

to simulate the minute-by-minute RT operation of the utility. The program deploys the balancing 

reserves held in the HA scheduling to meet minute-by-minute deviations from the HA schedules 
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(Figure 2). The deployment of the balancing reserves is constrained at any time by the capacity 

of the balancing reserves that are available in the up or down direction and by the rate at which 

balancing reserves can be fully deployed, assumed to be 10 min, though we later test other 

maximum deployment rates. Furthermore, a 5-min moving average filter is applied to the 1-min 

deviations to set the deployment of balancing reserves because it is not necessary to chase each 

and every deviation in order to maintain compliance with the NERC CPS2 standard. We assume 

that a combination of instructions from the RT schedulers and AGC would be able to provide the 

deployment of balancing reserves modeled with this program. This RT simulation of the 

deployment of balancing reserves does not account for unit-by-unit specific characteristics and 

does not use economic optimization to prioritize the deployment of specific units. Instead it 

simply accounts for the aggregate deployment of all the available balancing reserves. 
 

Any minute-by-minute deviation from the HA schedules that is not met by deployment of 

balancing reserves leads to a non-zero ACE. The resulting CPS2 score is calculated by 

examining the number of 10-min periods in which the average ACE over the 10-min period 

remains within the minimum threshold for the utility specified by the L10 parameter. A CSP2 

score of 95% reported here, for instance, indicates that within 95% of the 10-min periods 

examined over the year, the 10-min average of the ACE was less than L10. For each scenario we 

simulate the deployment of the balancing reserves and calculate the CPS2 score first for the load 

and small amount of wind (without any PV) and then again for the load, wind, and PV (what we 

call the net load). 
 

One important item to note regarding this approach is that reserve requirement rules are 

determined based on past observations of deviations from schedules. The performance of those 

reserve rules is then simulated in order to calculate the resulting CPS2 score. In this way, the 

reserve rules are an input to the simulations and the CPS2 score is an outcome of the actual 

deployment of reserves. This approach somewhat mimics the information that would be 

available to schedulers and the outcome of their choices. An alternative simulation approach 

would be to specify a CPS2 target and determine reserve rules necessary to meet that target 

 

 

 

Figure 2.  Illustration of Method Used To Simulate Deployment of Balancing Reserves in Real Time 
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(i.e. treat the CPS2 score as an input and the reserve rules as an outcome). This allows better 

control over CSP2 scores across scenarios, but is not, in our opinion, as realistic of a 

representation of the actual situation faced by system schedulers. 

 

 

3.5 Estimate of Integration Costs 
 

In addition to evaluating the changes in operational practices that utilities will need to consider in 

order to successfully integrate PV into their power system, we are also interested in 

understanding the costs associated with DA forecast errors and additional balancing reserves 

held in the HA scheduling. Utilities like APS can already capture some of the impact of PV on 

the dispatch of their system by simulating PV in an hourly production cost model without 

changing balancing reserve requirements and without accounting for DA forecast errors (as in 

the production cost model runs used by APS resource planners described earlier). We can refer to 

this as a simulation of “well behaved” PV where hourly variability of PV is captured in the 

model, but sub-hourly variability and uncertainty in both the DA an HA are not captured. A 

simulation of “well behaved” PV will account for the smoother changes in PV production from 

one hour to the next that impact ramping and dispatch of other power plants on an hourly basis. 

In contrast, we are interested in estimating the magnitude of the costs that are “left out” when 

utilities assume PV is “well behaved” in a production cost model. In particular we want to 

estimate the difference in costs between a case in which PV leads to an increase in HA balancing 

reserves and revised dispatch to manage DA forecast errors and a case in which PV does not 

require increased balancing reserves and is perfectly forecasted in the DA. We refer to this 

difference in costs as the “integration costs” of PV. However, we recognize that there is no single 

accepted definition of the term “integration costs” and no agreed-upon way to correctly calculate 

such costs (Milligan et al. 2011). That said, we focus on a very specific definition of this cost, 

which is useful for understanding the magnitude of the costs that would be ignored if we were to 

instead assume that PV generation was able to be perfectly forecasted in the DA and to not 

increase the balancing reserve requirement in the HA scheduling. Such an assumption is 

implicitly made when production cost models are used to simulate the impact of PV without 

accounting for imperfect forecastability or sub-hourly variability. 

 

In order to estimate this integration cost, we run three simulations and calculate the resulting 

total production cost (TC) for each case as follows: 
 

1. Perfect,    . Calculate the total production cost for scenario in which PV is perfectly 

forecasted in the DA and does not increase balancing requirements for the HA 

scheduling. 

 

2. HA balancing with no DA forecast errors,     . Calculate the total cost for scenario 

in which the balancing requirement is increased to accommodate PV for the HA 

scheduling. Maintain the assumption that the DA commitment is based on a perfect DA 

forecast. 
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3. HA balancing and DA forecast errors,     . Calculate the total cost for a scenario 

with both increased balancing requirements in for the HA scheduling and imperfect DA 

forecasts. 

 

Based on the total production costs estimated in these three cases, we estimate the integration 

costs as follows: 

 

Cost of the balancing requirement in the HA scheduling ($/MWh-PV) 

 

(        )    ⁄  

 

Cost of DA uncertainty ($/MWh-PV) 

 

(         )    ⁄  

 

Cost of uncertainty and balancing reserves 

 

(        )    ⁄  

 

  = Cost of DA uncertainty + cost of balancing reserves = “integration cost” ($/MWh-PV)
10

 

  

                                                 
10

 This definition of “integration cost” is similar to the method used to calculate the integration cost of wind in the 

Eastern Wind and Transmission Integration Study (EWITS) (EnerNex Corp., 2010):  

 

“The study team computed the cost of managing the delivery of wind energy (i.e., the integration cost) by 

running a set of comparative production simulations. In these cases, analysts assumed that wind energy did 

not require carrying additional regulating reserves for managing variability and short-term uncertainty. 

They also assumed that the hourly wind energy delivery was known perfectly in the unit-commitment step 

of the simulation [TCP]. The differences in production costs among these cases and the corresponding cases 

where wind generation is not ideal [TCDA] can be attributed to the incremental variability and uncertainty 

introduced by the wind resource.” 

 

One difference is that EWITS defines the cost of DA uncertainty as the difference in the cost of the system with 

DA forecast errors and no additional balancing reserves to the cost of the system with no DA forecast errors and 

no additional balancing reserves. We define the DA uncertainty as the difference in the cost of the system with 

DA forecast errors and additional balancing reserves to the cost of the system with no DA forecast errors and 

additional balancing reserves. 

 

Our approach and the EWITS approach are not the same as the approach used by Black & Veatch (2012a) in the 

previous solar integration study. They account only for incremental reserve requirements and do not include a 

cost associated with DA forecast errors. Further, Black & Veatch rely on one case in which the load is increased 

according to the incremental reserve requirements and another in which the load is decreased according to the 

incremental reserve requirements. The approach used in this study does not change the load based on the reserve 

requirements; instead, reserves are directly modeled as a constraints in the unit commitment/economic dispatch 

model.  
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4 Data 
 

We simulate a case study of the APS system based on projections of the load, renewables, and 

generation for the year 2027. In the simulations, we maintain relationships between load, wind 

and PV (at least at an hourly level) using historical data from the same weather year (2005). We 

develop two scenarios (described in Table 3): one using the 2012 APS Integrated Resources Plan 

(IRP) base case (low PV) and the other using the expanded renewables case (high PV). 

 

 
Table 3.  Description of Scenarios Used to Evaluate the Impacts of PV (2027) 

Scenario 

 
Load  

(peak load) 
Wind  

(nameplate capacity) 
PV 

(nameplate capacity) 

    
Low PV  9,151 MW 630 MW 1,674 MW 

High PV  9,151 MW 630 MW 2,974 MW 

 

 

4.1 Load 
 

The load data in this analysis include hourly DA schedules (forecasts), hourly HA schedules 

(forecasts), and 1-min actual load. To estimate the 2027 load, we scale the historical hourly load 

from APS by a constant scaling factor of 1.384. The scaling factor is such that the scaled load 

data matches the projected annual demand for future years in the APS 2012 IRP. Due to data 

limitations, we did not have access to the DA and HA load schedules from the 2005 weather 

year, but we did have access to DA and HA load forecast errors recorded by APS in 2010. We 

therefore create DA load schedules for 2027 by assuming that the historical DA forecast errors 

that were recorded by APS in 2010 occur with the same magnitude and on the same hour of the 

year in 2027. We similarly create HA schedules by assuming that historical HA forecast errors 

recorded by APS in 2010 occur with the same magnitude and on the same hour in 2027. We do 

not apply any scaling to the magnitude of DA and HA forecast errors for load. Figure 3 shows 

the resulting HA load schedule for 2027. 

 

Again due to data limitations, we do not have 1-min load data from the historical 2005 weather 

year. Instead, we create a 1-min time series of the load by adding 1-min variability recorded over 

a 44-day period by APS (February 2, 2007 to April 4, 2007) to the hourly load time series. We 

isolate the 1-min load variability by taking the difference between the 1-min time series and a 

1-min interpolation between the hourly averages of the time series based on a cubic spline fit. 

We then add the 1-min variability to a 1-min cubic spline interpolation of the projected hourly 

average load in 2027. In order to have a full year of 1-min load data for 2027, we repeat the 

44-day series of 1-min variability over and over again throughout the year of 2007 hourly load. 

We identified and removed five anomalous events in which the ramp rate of the 1-min load 

appeared to far exceed the ramp rate observed over the remainder of the 44-day period. No 

scaling was applied to the historical 1-min variability when moving from the historical 

variability recorded in 2007 and the projected load for 2027. 
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Figure 3.  Estimated HA Load Schedule for 2027, Chronological and Sorted in Descending 
Order (Load Duration Curve) 

 

 

The lack of scaling for 1-min load variability, HA load forecast errors, and DA load forecast 

errors between the historical measured value and the projected level in 2027 is a conservative 

assumption in the sense that it may understate future needs for load variability and uncertainty. 

In effect, we are assuming that the load variability and uncertainty that APS has experienced in 

the past is the same as what they will experience in the future, even though the average load 

levels is expected to grow. This results is a relative improvement in load variability and 

uncertainty in percent of peak load terms (since the 2027 peak load is higher than historical 

levels but load variability and uncertainty are not assumed to be higher). It may be that future 

loads will have more variability and more uncertainty in the future, such that variability and 

uncertainty will increase in proportion to load growth. If that does occur, the integration costs 

attributable to PV may by lower (more of the aggregate variability and uncertainty will be 

attributable to loads) or it could be higher (resources may already be strained managing load 

uncertainty and variability, making it more difficult to also manage PV variability and 

uncertainty). 

 

 

4.2 Wind 
 

The wind data used in this analysis are based on wind data and DA forecasts developed for the 

WWSIS (Potter et al. 2008). The 2027 wind sites include current wind plants that APS has online 

today in New Mexico and Arizona, and new wind sites also located in New Mexico and Arizona, 

as described in Appendix E. The existing wind was approximated by 9 30-MW sites (270-MW 

nameplate capacity), and the new wind sites were approximated by 12 additional 30-MW sites 

(360-MW nameplate capacity). The DA schedules generated in the WWSIS were scaled by a 

factor of 0.9 because of a tendency for DA wind forecasts to otherwise exceed the actual wind 

output (i.e., we removed the DA wind forecast bias). 
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HA schedules for wind were created based on the 1-min actual wind output recorded 30 min 

prior to the start of the operating hour. The HA forecast for wind was therefore based on an 

assumption of a 30-min persistence of wind. This is a conservative assumption because advanced 

wind forecasting techniques available now and in the future should be able to perform better than 

persistence. Figure 4 shows the resulting HA schedule for wind power. 

 

 

 

Figure 4.  Estimated HA Wind Schedule for 2027, Chronological and Sorted in 
Descending Order (Wind Duration Curve) 

 

 

The 1-min time series of actual wind outputs was created by interpolating between the 10-min 

average wind outputs from the original WWSIS dataset using a cubic spline fit. No additional 

sub-10-min variability was added to the wind time series. 

 

 

4.3 PV 
 

PV was modeled as a mixture of different PV configurations (e.g., tracking or fixed, horizontal 

or tilted) and a mixture of distributed and utility scale, all located in Arizona. The locations of 

the PV sites are described in Appendix E. In all cases, DA schedules were based on hourly DA 

insolation forecasts developed for the WWSIS (Potter et al. 2008) and then run through the 

National Renewable Energy Laboratory (NREL) PVWatts program to estimate DA schedules for 

PV. PVWatts converts insolation into PV production based on the PV plant capacity, PV plant 

configuration, an assumed DC-to-AC derate factor (assumed to be 0.83 in this case), and ambient 

temperature. Ambient temperature for a nearby weather station (depending on the location of the 

modeled PV site) in the same weather year (2005) was used in PVWatts to generate PV 

production data. 
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HA schedules, as shown in Figure 5 for the high-PV scenario, were based on assuming that the 

1-min clear sky index 30 min prior to the start of the operating hour would be the clear sky index 

for the operating hour, where the clear sky index is defined as the ratio of the actual PV 

production to the PV production if the sky were clear. The HA forecast of PV is therefore 

represented by a 30-min persistence-of-cloudiness forecast. The resulting forecast is a 

conservative assumption in that the persistence of cloudiness forecast can be used today without 

utilizing forecasting techniques that are more advanced than persistence of cloudiness. Actual 

HA forecasts using techniques that are available today, such as motion-vector forecasts based on 

satellite images (Hamill and Nehrkom 1993), or using techniques available in the future should 

be improvements on persistence of cloudiness forecasts (Hammer et al. 1999). 

 

 

 

Figure 5.  Estimated HA Solar PV Schedule for 2027 (high-PV scenario), Chronological 
and Sorted in Descending Order (PV duration curve) 

 

 

The 1-min PV data were synthesized based on an approach detailed in Appendix A. In general, 

1-min variability was synthesized for each of the individual PV sites based on the hourly average 

clear sky index derived from historical satellite data for each site from 2005. The 1-min 

variability was synthesized in such a way that the energy content in each sub-hourly frequency 

and the correlation of 1-min variability based on frequency and distance between sites matches 

characteristics derived from a network of 1-min solar insolation data at the U.S. Department of 

Energy (DOE) Atmospheric Radiation Measurement (ARM) Network in the Southern Great 

Plains (described further by Mills and Wiser 2010). The 1-min clear sky production is based on 

the BIRD clear-sky model (Bird and Holstrom 1981). The 1-min time series that were 

synthesized based on a point estimate of insolation were further smoothed to represent within-

plant smoothing in the case of utility-scale PV or smoothing between small PV installations for 

distributed PV. In the case of utility-scale PV, the smoothing parameter was based on empirical 

analysis PV plant data in Spain that show the smoothing is related to the PV plant area 

(Marcos et al. 2011b). In the case of distributed PV, the same smoothing algorithm was applied, 
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but the effective area of the distributed PV was increased to roughly the size of a single cell for 

the satellite data (roughly 11 km by 11 km) for calculating the smoothing parameter. Insolation 

data were again converted to PV production data using PVWatts. This synthesized 1-min PV 

data was not validated through comparisons to actual PV plant data, though this is recommended 

in future research. 

 

 

4.4 Forecasting Errors 
 

DA forecasting errors affect the degree to which resources need to be re-dispatched or committed 

in the HA scheduling and HA forecasting errors contribute to the deployment of balancing 

reserves in RT. Forecast error statistics for load and wind and PV generation are summarized in 

Tables 4 and 5. Not surprisingly, load, wind, and PV forecast errors are all consistently larger in 

DA scheduling than in HA scheduling. When normalized to peak load or nameplate capacity, the 

load is easier to forecast than wind or PV and PV is considerably easier to forecast than wind 

(Table 4). The normalized forecast errors for PV are larger in the high-PV case because of the 

greater amount of large utility-scale PV plants added in this scenario. These large utility-scale 

PV plants have less geographic diversity and therefore somewhat larger forecast errors relative to 

the nameplate capacity compared to the distributed PV resources. One way to measure the skill 

of the DA forecasts used in this analysis is to compare the normalized forecast errors to 

persistence forecasts based on the same hour of the previous day (herby referred to as DA 

persistence forecasts). The DA wind forecasts provide the greatest improvement relative to DA 

persistence of 35-37% (depending on whether the comparison is made using the NMAE or 

NMSE error metric), followed by DA load forecasts (16-18% improvement over DA 

persistence). The DA PV forecasts, however, provide only 2-8% improvement over DA 

persistence, suggesting there is room for improvement of DA PV forecasts used in this analysis. 

Alternative PV forecasting methods are evaluated by Perez et al. (2010). 

 

 
Table 4.  Normalized Forecasting Error Statistics for Load, Wind, and Solar PV in 2027 (Load is normalized by peak HA 
load and wind and solar PV by nameplate capacity) 

  
Normalized Mean Absolute Error (NMAE) 

 
Normalized Mean Square Error (NMSE) 

Forecast 
 

Load Wind Low PV High PV  Load Wind Low PV High PV 

          
DA  1.9% 12.7% 3.2% 3.5%  2.7% 17.2% 7.7% 8.4% 

HA  0.2% 4.4% 1.3% 1.6%  0.3% 6.4% 2.8% 3.4% 

 

 

The absolute forecast errors depend on the amount of load, wind, and PV in each scenario. In 

absolute terms, the magnitude of DA and HA forecast errors for wind are smaller than those for 

load or PV due to the small amount of wind in each scenario (Table 5). Similarly in the low-PV 

case, the DA and HA forecast errors for PV are smaller than those for load. In the high-PV case, 

however, the maximum absolute DA and HA forecast errors for PV exceed the load forecast 

errors and the mean absolute HA forecast error is also higher for PV than for load. 
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Table 5.  Absolute DA and HA Forecast Errors in 2027 

 

Absolute Forecast Error [MW] Load Wind Low PV  High PV  

     

DA forecasts     

 Maximum 1,945 581 1,215 2,199 

Minimum  0.0 0.0 0.0 0.0 

Average 173 80.2 53.2 103 

HA forecasts     

 Maximum 755 267 507 976 

 Minimum  0.0 0.0 0.0 0.0 

 Average 17.6 27.8 21.5 47.2 

 

 

4.5 Conventional Generation  
 

We derive the data characteristics of the thermal generation systems based on the APS IRP (APS 

2012) and the Ventyx database (Ventyx 2012). The IRP document describes the current 

generator portfolio, as well as the generation expansion and retirement plans until the year 2027 

(APS 2012, Attachment D.1(a)(1)). The Ventyx Generator Database provides estimates of 

several generator parameters, such as capacities, unit blocks, and heat rates. Based on the Ventyx 

database,11 each unit is modeled with a minimum block and three equally sized dispatch blocks 

between minimum generation and full output. The EIA Annual Energy Outlook (EIA 2012) 

gives the projection of fuel prices into the future year of 2027. From these sources we are able to 

build the generator portfolio for the year 2027. We do not model any long-term contracts or 

market purchases, and also ignore the impacts of transmission constraints in this analysis. These 

simplifying assumptions must be kept in mind in interpreting the results from our study. In 

general, market purchases and exchanges of power with neighboring regions may increase the 

level of flexibility in the system, whereas binding transmission constraints will likely have the 

opposite effect. 

 

The company has its supply from both conventional resources and renewable resources. The 

projected conventional resource in 2027 includes 67 generation units that can be independently 

committed and dispatched. These units include 3 nuclear units in a single plant, 8 coal units, 

54 gas-fired power plants (4 steam turbines, 9 combined cycle, and 41 combustion turbines), and 

2 small oil units. Eight units are only partly owned by the company (i.e. the three nuclear units 

and five coal units), and we reduced the capacity, ramp rates, start-up costs, and other relevant 

parameters according to the ownership percentage. The eight jointly owned units are also 

assumed to be must-run units, based on the information in APS IRP (APS 2012). The oil units 

make up less than 1% of the total capacity, and they are seldom committed in our results because 

of the high projected oil price. Therefore, we mainly discuss the results for the nuclear, coal, and 

gas units. Table 6 shows the conventional resource capacity contribution and the fuel prices used 

in our study. The resulting aggregate supply curve from thermal generators is shown in Figure 6. 

                                                 
11

 We made our own estimates for generators in instances for which Ventyx did not provide data. 
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For the given fuel price assumptions, nuclear is the technology with the lowest operating costs, 

followed by coal, different types of gas-fired generation, and finally the two oil units with very 

high fuel price. In the case study, we use the same portfolio of thermal generators in all 

simulated cases. We do conduct sensitivity analysis on the fuel prices for coal and gas. 

 

Based on current utility practices, we at first restrict the nuclear plant to constant operation at full 

capacity. As is explained later, this assumption (along with other assumptions such as that the 

utility is unable to sell excess power to neighboring utilities) contributes to the need for 

curtailment of relatively large amounts of renewables. We therefore relax the constant nuclear 

constraint in some of the cases as a way to introduce more flexibility in system resources and 

therefore reduce renewable curtailment. The assumptions used to simulate this hypothetical 

flexible nuclear plant are described in the tables. Although actual nuclear flexibility parameters 

for nuclear plants are not available for the nuclear plant operated by APS (since it is operated 

with constant output), nuclear plants are operated in a flexible manner in France and Germany 

(OECD 2012). The parameters used in to model flexible nuclear in this study match the 

capabilities of these flexible nuclear plants in other countries. In addition, the utility currently 

requires five of the coal units to always remain online, though these can be dispatched between 

minimum generation and full capacity. The minimum generation level of these online units plus 

the fixed output of the nuclear capacity, a total minimum generation level of 1,798 MW, has 

significant implications for the amount of renewable curtailment under a high PV penetration, as 

evident from the case study results presented in the next section. We refer to the aggregate 

minimum generation level as the “must-run” capacity.  

 

 
Table 6.  Generator Capacity and Fuel Price by Technology (ST-Steam, CC-Combined Cycle, CT-Combustion Turbine) 

Technology 
No. of 
Units 

 
Maximum Capacity 

[MW] 
Minimum Capacity  

[% of max] 
Total Capacity 

[MW] 
Fuel Price 
[$/MMBtu] 

      
Nuclear* (ST) 3 387 100 (50 if flex.) 1,162 0.50 

Coal* (ST) 8 108–488 45–55 1,982 1.96 

Gas (ST) 4 70–100 25–48 361 5.85 

Gas (CC)  9 88–672 25–30 3,206 5.85 

Gas (CT)  41 19–103 25–50 2,945 5.85 

Oil (CT) 2 16–54 50 70 27.40 

* The three nuclear units and 5 of the coal units are partly owned and must-run. 
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Figure 6.  Aggregate Supply Curve for Thermal Generators in APS 
System for 2027  

 

 

An accurate representation of unit commitment and other operational constraints is obviously 

important to investigate the impact of forecasting errors and variability in renewable resources 

on operating cost and system reliability. To the extent possible, we based the unit-level data for 

operational constraints and costs, such as hourly ramp rates, minimum up- and down-times, start-

up costs (calculated from median start-up fuel use), and heat rates on information in the Ventyx 

database. However, for some of the required parameters for the commitment/dispatch model, we 

had to use generic assumptions derived from other sources (Black & Veatch 2012b; Intertek 

APtech 2012; Cirillo et al. 2006). The most important assumptions are summarized in Table 7 

through Table 10. Note that the warm start-up costs (Table 8) considers median start-up fuel use, 

as reported in Ventyx (2012), and do not consider other costs such as increased maintenance and 

capital expenditures. The resulting start-up costs are in the lower range of what is reported in 

Intertek Aptech (2012), particularly for the coal units.
12

 

 

Because we use several sources from industry and to some extent our own assumptions in 

building the dataset, we emphasize that the values of many parameters are likely to deviate from 

the true values in the APS system. This should be kept in mind in evaluating the results presented 

in the next section. The purpose of the study is not to calculate operating costs with high 

accuracy, but rather to present a consistent methodological framework for estimation of 

integration costs and investigate how such costs, system reliability, and scheduling decisions 

change under different assumptions about reserve requirements, operational flexibility, fuel 

costs, etc., as further discussed in the next chapter. 

 

 
  

                                                 
12

 Note that 5 out of 8 coal units are considered must-run, as discussed above, so that the start-up costs do not 

impact their schedules in any case. 
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Table 7.  Average Block Heat Rates by Technology (ST-steam, CC-combined cycle, CT-combustion turbine). (Blocks 1, 
2, 3 have the same size, i.e., (Pmax − Pmin)/3, for each plant)  

Technology 

 
Heat Rates [MMBtu/MWh] 

 
Pmin Block 1 Block 2 Block 3 

     
Nuclear (ST) 10.5 10.5 10.5 10.5 

Coal (ST) 9.6–13.4 9.5–12.7 9.0–11.9 8.8–11.8 

Gas (ST) 14.0–17.8 12.4–16.0 11.6–14.4 11.0–13.6 

Gas (CC)  8.4–16.1 7.5–12.6 7.0–11.2 6.7–10.8 

Gas (CT)  12.2–19.3 11.0–17.0 9.5–15.4 8.7–15.0 

Oil (CT) 17.0–19.8 15.0–17.9 12.9–15.7 12.7–15.5 

 

 
Table 8.  Start-up Cost, and Variable Cost Assumptions by Technology (ST-Steam, CC-Combined Cycle, CT-Combustion 
Turbine) 

 
 

Warm start-up cost   

 
 

[$K/start-up] [$/MW/start-up] 
Cold start-up cost 

multiplier
1
 

Variable O&M 
[$/MWh] 

     
Nuclear (ST) N/A N/A N/A 3.47 

Coal (ST) 3.4–22.0 29.2–45.3 1.5 1.26–1.75 

Gas (ST) 4.7–8.8 50.1–91.3 1.4 1.15–2.45 

Gas (CC) 3.9–23.6 33.5–46.8 1.5 1.0–1.32 

Gas (CT) 1.5–5.0 39.8–77.0 1 0.4–1.12 

Oil (CT) 6.9–16.4 304–428 1 0.6–0.83 
1
 Multiplied by warm start-up cost to get cold start-up cost. 

 

 
Table 9.  Minimum on, Minimum off, and Cold Start-up Times (Beyond Minimum Down) 
by Technology (ST-Steam, CC-Combined Cycle, CT-Combustion Turbine)  

Technology 

 
Times [hr] 

 
Minimum on Minimum off Cold Start-up  

    
Nuclear (ST) N/A N/A N/A 

Coal (ST) 8–16 8–16 6 

Gas (ST) 8 8 4 

Gas (CC)  4–8 6–8 4 

Gas (CT)  1–2 1–3 0 

Oil (CT)  1–2 1–3 0 
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Table 10.  Ramp Rates by Technology (ST-Steam, CC-Combined Cycle, CT-Combustion Turbine) 

 
 

Ramp rate down 
 

Ramp rate up 
 

Instant ramp rate up 

 
 

[%/hr] [MW/hr] 
 

[%/hr] [MW/hr] 
 

[%/min] [MW/min] 

         
Nuclear* (ST) 35.7 138  35.7 138  5 19 

Coal (ST) 31.1–39.4 35–184  26.2–44.3 28–146  2 2.2–10 

Gas (ST) 73.7–81.4 57–77  47.0–61.4 43–47  2 1.4–2.0 

Gas (CC) 43.4–83.0 44–336  29.7–50.0 42–336  5 4.4–34 

Gas (CT) 81.3–100 19–103  70.0–100.0 19–103  8.33 1.6–8.6 

Oil (CT) 100 16–54  100.0 16–54  8.33 1.3–4.5 

* These parameters only apply in cases with flexible nuclear operations. 

 

 

4.6 Other Assumptions 
 

In this study, we model two categories of operating reserves, as discussed in Section 3.1 and 

summarized in Table 2. The balancing reserves are calculated dynamically based on forecasting 

errors and variability in solar power, wind power, and load. The results are presented in Section 

5. In contrast, the contingency reserves are kept constant throughout the simulation period and do 

not change between DA and RT. On the basis of projections in the APS IRP (APS 2012), we 

assume a contingency reserve of 410 MW, half of which is spinning. This estimate takes into 

account that APS is part of the Southwest Reserve Sharing Group, which effectively reduces the 

required amount of contingency reserves for the utility because of reserve sharing with 

neighboring utilities. 

 

In the system simulations, we do not model contingencies. However, forecasting errors and sub-

hourly variations are accounted for in the RT dispatch and corresponding estimation of DA and 

HA balancing reserves to meet certain reliability standards. In the modeling of DA and HA 

scheduling, we therefore want to avoid reserve shortfalls. This is done by imposing a high 

penalty on unserved reserve in the objective function of the unit commitment/dispatch model. 

We used a penalty of $9,900/MW-h for unserved reserves, applying the same penalty for all 

reserve categories and types in Table 2. This is just below the assumed penalty for unserved load 

of $10,000/MWh. The results show that in most cases the resulting curtailment of reserves is 

very small, as further discussed in Section 6. 
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5 Impact of PV with Base Assumptions 
 

 

5.1 Balancing Reserve Requirements  
 

The balancing reserve requirements in each scenario were found by examining the 1-min 

deviations from the HA schedule. As described earlier in Section 3.1, the balancing reserve rules 

were then chosen to be able to cover deviations within the 2.5th and 97.5th percentile in the 

down and up direction, respectively. In a real system, it is not possible to know ahead of time 

what the 1-min deviations will be from HA schedules. What is possible, on the other hand, is to 

examine the 1-min deviations from HA schedules from the previous year then utilize that 

information to develop balancing reserve rules for the operating year. We simulate this situation 

by analyzing 1-min deviations from HA schedules based on a 2004 weather year
13

 to develop 

balancing reserve rules that are applied in our simulation using the 2005 weather year date. The 

resulting balancing reserve requirements for the HA schedules are shown in Figure 7. The 

requirements are shown for the case in which balancing reserves are required just for the load 

and wind followed by the case in which balancing reserves are required for the net load (load, 

wind, and PV). The balancing reserve requirements are dynamic and change on an hour-to-hour 

basis, depending on system conditions. The maximum balancing reserve and the average 

balancing reserve in the up direction are summarized for the load-wind and net load in each 

scenario in Table 11. 

 

 

(a) (b)  

Note: Solid line is the balancing reserve requirement in the up direction; dashed line is the balancing reserve 

requirement in the down direction. Hourly balancing reserve requirements in each direction are sorted from highest 

to lowest to create an exceedance curve.  

Figure 7.  Balancing Reserve Requirements for Load-Wind and for Net Load (load, wind, and PV) over the 
Year in the Low-PV Scenario (a) and High-PV Scenario (b) 

  

                                                 
13

 The 2004 weather year data for load, wind, and PV were created in the same manner as the 2005 weather year, 

described in Section 4. In addition to hourly averages of wind and PV production for 2004 we also had DA 

forecasts for wind and PV based on the 2004 weather year. For load, we had hourly load from 2004 but had to 

again rely on other historical years for DA forecast errors (2010), HA forecast errors (2010), and 1-min load 

variability (2007). 
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The addition of PV to the utility system leads to an increase in the balancing reserve requirement 

in both the up and down directions. Adding 1,674 MW of PV in the low-PV scenario increases 

the maximum balancing reserve requirement by 92 MW (5.5% of PV nameplate capacity) 

beyond the maximum balancing requirement for the load and wind alone.
14

 In the high-PV 

scenario large, utility-scale PV plants are added to the PV already in the low-PV scenario, 

leading to a total nameplate capacity of 2,974 MW of PV. The maximum balancing reserve 

requirement for the net load in the high-PV case is now 369 MW larger (12.4% of the PV 

nameplate capacity) than the maximum balancing reserve requirement for the load and wind 

alone. Note, however, that the maximum balancing reserve requirement occurs only over a very 

small portion of the year, as illustrated in Figure 7. This figure also highlights that increases in 

the balancing reserves due to only occur in roughly half of the hours of the year since balancing 

reserves do not need to be increased for PV in night-time hours. 

 

 
Table 11.  Balancing Reserve Requirements in HA for the Load-Wind and Net Load (load, wind, and PV) in the  
Low-PV and High-PV Scenarios 

 

 
Maximum Balancing 

Reserve up (MW) 

 
Average Balancing Reserve 

up (MW) 

 
Maximum Balancing Reserve 

down (MW) 

Scenario 
 

Load-Wind Net Load 
 

Load-Wind Net Load 
 

Load-Wind Net Load 

         
Low PV 187 278  132 171  159 234 

High PV  187 556  132 241  159 390 

 

 

5.2 Capacity Balance 
 

The overall balance between supply (thermal and renewable) and demand (load and operating 

reserves) over a year is illustrated in Figure 8 for the low-PV and high-PV scenarios. There is 

clearly a large spike in demand during the summer months. In fact, the sum of load and operating 

reserves up (balancing and contingency) exceeds the installed thermal capacity for some hours in 

the summer. However, because of the contributions from wind and solar PV, there is always a 

positive capacity surplus in the system. The minimum capacity surplus is 646 MW and occurs at 

4 p.m. July 18 in the low PV scenario.
15

 In the high-PV scenario, the capacity balance is 

improved, compared to the low-PV scenario, because the high-PV scenario contains 1,300 MW 

more PV capacity, while the thermal capacity and the load are the same. However, the balancing 

reserves increase because of the additional PV. The minimum capacity surplus is now 727 MW 

                                                 
14

 A similar scenario in the Black & Veatch (2012a) solar integration study found an incremental increase in 

reserves of up to 229 MW (13.7% of PV nameplate) in order to maintain a CPS2 score of 95%. The Black & 

Veatch study used a slightly different approach for calculating reserves (including the use of a 70-min 

persistence-of-cloudiness forecast for PV compared to the 30-min persistence-of-cloudiness used in this study) 

and also did not account for reserves for wind. These differences may in part explain why Black & Veatch found 

larger incremental reserve requirements than reported in this study.  
15

 Note that forced and planned outages are not reflected in this figure. We do not consider outages explicitly in 

system commitment and dispatch simulations, but the model ensures that the operating reserve requirements are 

always met, to the extent possible, in the HA schedule. 
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and occurs at 5 p.m. on July 12. The average capacity surplus is 314 MW higher than that in the 

low-PV scenario. 

 

 

 

Figure 8.  Capacity Balance for Low-PV (top) and High-PV Scenario (bottom) in 2027  

 

 

Because we assume that the utility does not trade power with neighboring utilities, another 

important factor is the minimum net load compared to the must-run capacity (based on the 

minimum generation of five coal units and the full capacity of the nuclear units). Curtailment of 

renewables will be necessary when the minimum net load is lower than the must-run capacity. 

The actual curtailment will be even larger due to the requirement that thermal generators must 

provide balancing down reserves only. Enabling renewables to provide balancing down reserves 

when they would otherwise be curtailed is one way to reduce overall curtailment. Some 

renewables can already provide reserves in the down direction (by curtailing output when called 
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on), but we do not include this option in the current analysis. We highlight this limitation here 

and propose this as an area for future analysis in Section 7. 

 

We compare the HA schedule of the net load plus the operating reserves down to the must-run 

capacity for both the low-PV and high-PV scenarios (see Figure 9). Periods of low net load 

occurs primarily in spring months. In some hours the minimum net load is lower than the must-

run capacity, suggesting that renewables curtailment will be necessary when it is assumed that 

the utility is unable to sell excess power to neighboring utilities, that five of the coal units must 

always remain online, that renewables are unable to provide balancing down reserves, and that 

the nuclear units must remain at full capacity. The potential for renewable curtailment is 

particularly acute in the high-PV scenario under these assumptions. In fact, by comparing the net 

load and balancing reserve down requirements for each hour of the year with the must run 

capacity, we find that more than 8% of the available renewable resources over the year must be 

curtailed due to surplus situations. This is a simple calculation of the minimum required 

curtailment of renewable energy, which does not account for economic considerations and 

operational constraints in the power plants. The same calculation for the low-PV scenario gives a 

minimum renewable curtailment of less than 0.4% under the same assumptions, indicating that 

curtailment due to generation surplus is a much smaller problem under a lower PV penetration. 

 

Based on this simple analysis, we suggest that the utility in a future scenario with high 

penetration of solar PV must find some solution to manage generation in low net load periods, 

particularly in the winter and spring months. These solutions could involve some combination of 

finding willing buyers for excess power outside of the utility, identifying ways to maintain 

reliability while allowing the five must-run coal plants to periodically shut down, requiring 

renewable generators to have the capability to provide balancing down reserves, or enabling the 

power output from the nuclear plant to be dispatched down in response to system needs. We 

model the latter option as an alternative to the base case with constant nuclear output in the high-

PV scenario. In this “flexible nuclear” case we allow the nuclear plants to operate between the 

nameplate capacity and a 50% minimum generation level (while still requiring the nuclear plants 

to always remain online). Some curtailment will still be necessary in the high-PV scenario even 

with flexible nuclear. We explore the consequences of the minimum net load in more detail later 

by calculating the actual curtailment of renewables during the HA scheduling in both the low-PV 

and high-PV scenarios. 
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Figure 9.  Net Load and Must Run Capacity for Low-PV (top) and High-PV (bottom) 
Scenarios in 2027 

 

 

5.3 DA Commitment and HA Schedules 
 

Below we present results from the scheduling model for the low-PV and high-PV scenarios for 

2027. In all cases, commitment and dispatch simulations were done for a full year. The low-PV 

scenario is analyzed under the assumption of constant nuclear plant output. In contrast, we 

analyze the high-PV scenario under two assumptions: fixed and flexible nuclear plant operations. 

This is motivated by the initial finding that a large amount of renewable curtailment would be 

required in the high-PV scenario with the assumptions about limited trade with neighbors, must-

run coal plants, no balancing down reserves from renewables, and fixed nuclear output. 

Therefore, in the high-PV scenario we introduce a case where those issues have been mitigated 

to some degree by assuming that the nuclear plant can be operated in a flexible manner. With the 

flexible nuclear assumption in the high-PV scenario, nuclear plants can be dispatched down, and 
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therefore provide spinning reserves up and down, when this is optimal from an economic 

perspective. This assumption deviates from current operational practices for most nuclear power 

plants, including nuclear plants owned and operated by APS. That said, the operators of the 

Columbia Generating Station in the Northwest US sometimes dispatch the nuclear plant below 

full capacity due to “economic dispatch” requests (automatic dispatch of a nuclear plant by 

signals from the power system is not permitted in the US by the nuclear regulator, but it is 

possible for the nuclear plant operators to change the plant dispatch). Nuclear plants in France 

and Germany often change the output of their nuclear plants in response to system conditions 

(OECD 2012).
16

 

 

Without further research, we cannot judge the best way to manage low net-load periods in a high 

PV scenario, but we can use the flexible nuclear case as a proxy for the solution that would be 

implemented by the utility. Where necessary, we distinguish between the high-PV scenario with 

inflexible nuclear and the high-PV scenario with flexible nuclear by calling them high-PV 

(Const. Nucl.) and high-PV (Flex. Nucl.), respectively. Additional results for the high-PV case 

with constant nuclear are reported in the Appendix D. As the constant nuclear assumption is not 

as limiting in the low-PV scenario, we maintain the constant nuclear assumption throughout the 

discussion of the low-PV scenario. 

 

An overview of the HA scheduling results for energy and reserves is presented in Table 12 

through Table 17. In both the low-PV and high-PV scenarios (Const. Nucl and Flex. Nucl.), the 

majority of energy is provided by three sources: nuclear, coal, and combined cycle (CC) natural 

gas plants. In the low-PV scenario, nuclear, coal, and CC plants provide more than 84% of the 

annual energy (Table 12). 8.6% of the annual energy is provided by the combination of utility-

scale and distributed PV and 4.7% by wind, so that the renewable energy penetration is 13.3% in 

the low-PV scenario. In contrast, less energy is provided by nuclear, coal, and CC plants in the 

high-PV scenario due to the additional energy from PV. The high-PV scenario increases the 

share of delivered PV to 14.3% or 16.8% of the annual demand, depending on whether the 

nuclear plants are operated as a constant or flexible resource (Table 14). Wind decreases slightly 

due to more curtailment, particularly with the constant nuclear assumption. The additional PV in 

the high-PV scenario primarily displaces energy from CC and coal plants (Table 14). In the 

flexible nuclear case, PV also reduces production by nuclear plants because solar PV has zero 

marginal costs while nuclear marginal costs are non-zero. The decrease in the load factors of the 

thermal plants indicates that these plants are increasingly part-loaded with higher PV penetration. 

Oil-fired units are not dispatched at all, except in the high-PV case with constant nuclear, and the 

dispatch of gas-fired steam units is also very limited. 

 

                                                 
16

 “Based on the experience in France and Germany, this study finds that in terms of short-run load following, the 

technical capabilities of nuclear energy are comparable to those of large coal-fired units, are only slightly below 

those of combined cycle gas plants, but remain inferior to those of open cycle gas or oil turbines. Such short-run 

load following may constitute not only an essential contribution at the system-level but also an economically 

useful tool at the level of the plant and the electricity market. As prices in the day-ahead market become 

increasingly volatile, drop more frequently below the variable costs of nuclear power production and occasionally 

turn negative, the ability to stop production at constant levels becomes a vital part of an operator’s financial 

viability” (OECD 2012).  
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In the low-PV scenario, virtually all spinning reserves up (i.e., the combined need for spinning 

balancing and contingency reserves) are provided by coal, CC, and combustion turbine (CT) 

plants (Table 13). CTs do not contribute significantly to meeting the spinning reserves down. 

Nuclear plants cannot provide reserves in either direction in the low-PV scenario since they are 

assumed to operate at constant output. In the high-PV scenario, there is a similar pattern in the 

case with constant nuclear operation, i.e. coal, CC, and CT provide spinning reserves up, 

whereas coal and CC provide almost all the down reserves (Table 15). Allowing flexible nuclear 

operations changes the reserve scheduling significantly, particularly in the down direction, as 

nuclear plants now provide 9.3% of up reserves and as much as 33.1% of the reserves in the 

down direction (Table 15). 

 

The total unmet spinning reserves are insignificant in the low-PV scenario, as shown in Table 17. 

This result indicates that the commitment and dispatch model was able to meet more than 

99.999% of the required operating reserve targets.
17

 The periods with low net load in the high-

PV scenario with constant nuclear lead to some challenges with meeting spinning reserve 

requirements (Table 17). The unmet spinning reserves down in the high-PV (Const. Nucl.) 

scenario amounts to 551 MW-h/yr, meaning that the commitment and dispatch model was able 

to meet 99.97% of the required operating reserve target. The instances where the system has 

difficulty meeting the spinning reserve down requirement are still rare and only happen in 9 out 

of the 8,760 hours in a year. Allowing nuclear to be flexible in the high-PV (Flex. Nucl.) 

scenario resolves the challenge of meeting the spinning reserve down requirement, with no 

reserve shortfall in the down direction (Table 17). 

 

More detailed analysis of the results indicate that the provision of spinning reserves down is less 

challenging and costly than provision of spinning reserve up. In fact, the spinning reserve down 

constraint is much less frequently binding than the spinning reserve up constraint. On average 

there is considerably more spinning reserve down capability compared to the balancing reserve 

down requirement, especially in the high-PV (Flex. Nucl.) scenario.
18

 This is another indication 

that flexible nuclear operations would make the system much more flexible and it becomes less 

costly to provide the required balancing reserves. 

 

More detailed summary statistics of the HA scheduling results for energy and reserves are 

presented in Appendix D. 
  

                                                 
17

 As discussed in Section 3, the objective function of the scheduling model includes a high penalty for curtailment 

of reserves ($9,990/MW-h). Small amounts of curtailment may still occur, e.g., if this is cheaper than starting an 

additional unit or if the corresponding cost is within the mixed integer programming (MIP) gap of the MIP model 

(which was set to 0.5%). 
18

 The average shadow price of the spinning reserve down constraint is $1.6/MW-h in the low-PV scenario and on 

average there is twice as much down reserve available compared to the requirement. In the high-PV scenario the 

average shadow price for down reserves is $15.4/MW-h and $1.3/MW-h with constant and flexible nuclear 

operations, with 1.5 and 3 times as much available down reserves on average compared to the requirement. In 

comparison, the average shadow prices of the spinning reserve up constraint are $24.3/MW-h, $25.6/MW-h, and 

$20.5/MW-h for the low-PV, high-PV (Const. Nucl.), and high-PV (Flex. Nucl.), and surplus reserve up 

capability constraint is almost always binding in each of the cases. 



Integrating Solar PV into Utility System Operations 

36 

Table 12.  Summary of HA Energy Scheduling Results for Low-PV Scenario 
(2027) 

Category 

 
Energy 

 
Load Factor

a 

[% nameplate] 
Capacity Factor

b
 

[% nameplate] 
Energy 
[% total] 

    

Nuclear (ST) 100.0 100.0 25.2 

Coal (ST) 89.5 89.6 38.5 

Gas (ST) 30.6 0.0 0.0 

Gas (CC) 58.5 29.9 20.7 

Gas (CT) 62.0 3.6 2.3 

Oil (CT) N/A 0.0 0.0 

Solar N/A 23.7 8.6 

Wind N/A 34.3 4.7 

Total   100.0 
a
 Load factor is the ratio of the average energy from a unit when it is on to the 

unit nameplate capacity (average of individual unit load factors, not considering 
units that are never dispatched). 

b
 Capacity factor is the ratio of average energy to the total nameplate capacity 

for all units in a category. 

 

 
Table 13.  Summary of HA Reserve Scheduling Results for Low-PV Scenario (2027) 

 
 

Spinning Reserve up 
 

Spinning Reserve down 

Category 

 
Average if on

a
 

[% nameplate] 
Reserve 
[% total] 

 
Average if on

a
 

[% nameplate] 
Reserve 
[% total] 

      

Nuclear (ST) 0.0 0.0  0.0 0.0 

Coal (ST) 5.5 28.0  8.7 54.1 

Gas (ST) 19.8 0.0  0.0 0.0 

Gas (CC) 16.6 55.8  8.6 45.9 

Gas (CT) 32.0 16.2  0.2 0.1 

Oil (CT) N/A 0  N/A 0 

Solar N/A N/A  N/A N/A 

Wind N/A N/A   N/A N/A 

Total  100.0   100.0 

a
 Average of individual unit reserve provisions, not considering units that are never dispatched.  

 

  



Integrating Solar PV into Utility System Operations 

37 

Table 14.  Summary of HA Energy Scheduling Results for High-PV Scenarios (2027) 

 
 

Constant Nuclear 
 

Flexible Nuclear 

Category 

 
Load Factor

a 

[% nameplate] 
Capacity Factor

b
 

[% nameplate] 
Energy 
[% total] 

 
Load Factor

a 

[% nameplate] 
Capacity Factor

b
 

[% nameplate] 
Energy 
[% total] 

        

Nuclear (ST) 100.0 100.0 25.2  95.9 95.9 24.2 

Coal (ST) 86.6 86.3 37.1  86.3 84.0 36.1 

Gas (ST) 34.7 0.0 0.0  35.6 0.0 0.0 

Gas (CC) 52.8 25.7 17.9  49.6 24.4 17.0 

Gas (CT) 57.7 2.8 1.8  56.9 2.3 1.5 

Oil (CT) 50.0 0.0 0.0  N/A 0.0 0.0 

Solar N/A 22.2 14.3  N/A 26.0 16.8 

Wind N/A 27.7 3.8  N/A 32.9 4.5 

Total   100.0    100.0 
a
 Load factor is the ratio of the average energy from a unit when it is on to the unit nameplate capacity (average of individual unit 

load factors, not considering units that are never dispatched). 
b
 Capacity factor is the ratio of average energy to the total nameplate capacity for all units in a category. 

 

 
Table 15.  Summary of HA Reserve Up Scheduling Results for High-PV Scenarios (2027) 

 
 

Constant Nuclear 
 

Flexible Nuclear 

Category 

 
Average if on

a
 

[% nameplate] 
Reserve 
[% total] 

 
Average if on

a
 

[% nameplate] 
Reserve 
[% total] 

      

Nuclear (ST) 0.00 0.0  3.7 9.3 

Coal (ST) 7.8 33.9  6.1 25.7 

Gas (ST) 17.8 0.0  20.0 0.0 

Gas (CC) 18.8 52.1  25.9 52.1 

Gas (CT) 35.9 14.0  39.4 12.9 

Oil (CT) 50.0 0.0  N/A 0 

Solar N/A N/A  N/A N/A 

Wind N/A N/A  N/A N/A 

Total  100.0   100.0 
a 
Average of individual unit reserve provisions, not considering units that are never dispatched.  
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Table 16.  Summary of HA Reserve Down Scheduling Results for High-PV Scenarios (2027) 

 
 

Constant Nuclear 
 

Flexible Nuclear 

Category 

 
Average if on

a
 

[% nameplate] 
Reserve 
[% total] 

 
Average if on

a
 

[% nameplate] 
Reserve 
[% total] 

      

Nuclear (ST) 0.00 0.0  19.3 33.1 

Coal (ST) 10.4 60.8  13.5 36.8 

Gas (ST) 0.0 0.0  0.0 0.0 

Gas (CC) 8.1 39.1  12.0 30.0 

Gas (CT) 0.2 0.0  0.4 0.0 

Oil (CT) 0.0 0.0  N/A 0 

Solar N/A N/A  N/A N/A 

Wind N/A N/A  N/A N/A 

Total  100.0   100.0 
a 
Average of individual unit reserve provisions, not considering units that are never dispatched.  

 

 
Table 17.  Unmet Spinning Reserves in HA Schedule for Low-PV and High-PV Scenarios (2027) 

 Low-PV Scenario 

  
High-PV Scenario 

(Const. Nucl.) 

 
High-PV Scenario 

(Flex. Nucl.) 

 
Spinning 

Reserve up 

 
Spinning 
Reserve 

down 

 

Spinning 
Reserve up 

Spinning 
Reserve 

down 

 

Spinning 
Reserve up 

Spinning 
Reserve 

down 

         
Reserve target [GW-h/yr] 1,493 1,410  2,110 1,972  2,110 1,972 

Unmet reserves [MWh/yr] 9.3 0.0  4.0 551.2  5.7 0.0 

Percentage of reserve req. 0.0 0.0  0.0 0.0  0.0 0.0 

 

 

Table 18 shows that the total curtailment of renewable energy (wind and solar PV) is significant 

in the low-PV scenario, with almost 3% of the available renewable resources curtailed. Hence, in 

some situations the model finds it optimal to curtail renewable energy for economic reasons in 

the low-PV scenario, although APS does not currently practice curtailment of renewables based 

on economics. The renewable curtailment indicates that the system will face some challenges 

absorbing the wind and solar penetration levels identified in the APS 2012 IRP base case (13.7% 

of the load in total) under the assumptions of no trade with neighbors, must-run coal units, no 

balancing reserves down from renewables, and constant nuclear output. 

 

Under the same assumptions, a large amount of curtailment (17.8% of the available renewable 

energy) occurs in the high-PV (Const Nucl.) scenario. The high curtailment found by the model 

can be explained in part by the fixed nuclear output and the minimum generation levels of other 

units that remain online during low net-load events. The minimum amount of curtailment 

expected based on the net load and balancing reserve in the down direction is 8.3% of the total 

renewables potential in the high-PV (Const. Nucl.) scenario, as discussed in the previous section. 

The remaining curtailment is likely due to economic factors and possibly also physical 
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constraints such as minimum up- and downtimes, ramp rates, and the resulting minimum 

generation of other online thermal capacity during low net-load periods. The curtailments occur 

mainly in the months between October and May and during daytime hours between 7 a.m. and 

6 p.m. MST. In fact, more than 99% of the total renewables curtailment occurs between 7 a.m. 

and 6 p.m. MST, making PV the primary driver of the renewables curtailment. Moreover, if 

neighboring utilities had less PV in their systems it is likely that some of the curtailed energy 

could be sold since curtailment occurs when loads are high. However, we do not consider 

exchange with other entities in this study and under a scenario with limited flexibility, challenges 

during low net-load times may be more noticeable with inflexible nuclear and coal units and high 

PV than challenges with forecastability and short-term variability. 

 

Assuming that nuclear can be operated in a flexible manner dramatically reduces renewable 

curtailment in the high-PV (Flex. Nucl.) scenario, bringing it close to the same percentage as in 

the low-PV scenario (Table 18). This result shows that with a high PV penetration, it is very 

important with more flexibility in the rest of the system, in order to absorb the available 

renewable generation and avoid high levels of curtailments. We model flexible operation of the 

nuclear power plants as one such source of flexibility. Other sources of flexibility, such as 

trading with neighboring utilities/markets, relaxing must-run requirements for some coal units, 

provision of down reserves by renewables, and price response from consumers can also 

contribute to more system flexibility, but are not considered in this study. 

 

In all the results presented in this chapter the model curtails renewable energy whenever this is 

optimal from an economic perspective while also considering all the physical constraints of the 

power plants. In a later sensitivity scenario investigates the implications of minimizing the 

renewable curtailments for economic reasons by placing a very high penalty on renewable 

curtailments in the commitment and dispatch model. Potential reductions in curtailments from 

letting renewables provide down reserves are left for future work. 

 

 
Table 18.  Total Curtailment of Renewable Energy (wind and solar) in HA Schedule for Low-PV and  
High-PV Scenarios (2027) 

 

Low-PV Scenario 

 
High-PV (Const. 
Nucl.) Scenario 

High-PV (Flex. 
Nucl.) Scenario 

    
Curtailment [GWh/yr] 162 1,587 299 

Percentage of renewable energy 2.9 17.8 3.4 
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5.4 Detailed Thermal Generation Dispatch and Rescheduling 
between DA and HA 

 

We now take a closer look at some of the results from the UC/ED model. For the high-PV 

scenario, we limit the discussion to the scenario with flexible nuclear operations, as the 

preceding results illustrate that with fixed nuclear operations, along with assumptions of must-

run coal units, no trading with neighboring utilities, and all reserves provided by thermal units, 

operational challenges arise in terms of very high curtailments of renewable energy as well as 

difficulties in meeting BR requirements in some hours. As previously pointed out, the additional 

system flexibility could come from other resources than the nuclear power plants. 

 

A detailed illustration of the energy scheduling results at the HA stage for the low-PV and high-

PV (Flex. Nucl.) scenarios is presented in Figure 10 and Figure 11. During the peak load period, 

coal and nuclear units are scheduled as baseload units, i.e., primarily operating at their maximum 

output levels, in both scenarios (Figure 10). Gas-fired plants (both CC and CT) are used to 

follow the daily fluctuations in net load. CT plants operate only during peaking hours, whereas 

CC plants also operate at low-load hours. Figure 10 shows that the solar PV generation peaks 

before the load and that CT plants to a large extent make up for the declining solar PV toward 

the end of the days while loads are still high. Furthermore, the amount of generation by CT 

plants is considerably higher in the low-PV scenario. The wind generation is the same in both 

scenarios, because there is no curtailment of renewable energy (wind or solar) during the peak 

load week in these two scenarios. 

 

Figure 11 illustrates that the dispatch schedule deviates much more from the conventional pattern 

in the minimum-load week. The coal plants’ dispatch varies more frequently because the coal-

fired units are dispatched up and down to follow the fluctuations in net load. In the high-PV 

(Flex. Nucl.) scenario the nuclear plants also are dispatched down during daytime to make room 

for solar generation. Gas-fired power plants (CCs and CTs) are still being scheduled in both 

scenarios, although coal and nuclear are frequently the only thermal technologies operating. In 

those hours spinning reserves are provided entirely from coal (low-PV with fixed nuclear) or 

from coal and nuclear (high-PV (Flex. Nucl.) scenario). There is substantial curtailment of 

renewable energy in the high-PV (Flex. Nucl.) scenario during the daytime. Curtailment levels in 

individual hours are as high as 30%, whereas 10% of the total available renewable energy is 

curtailed in this week in the high-PV scenario, despite the assumption of flexible nuclear 

operations. In the low-PV scenario, the curtailment of wind and solar generation is also 

significant with 8% of the available renewable resources spilled during the low-load week. The 

less flexible system with fixed nuclear operations contributes in large part to the renewable 

curtailment. Still, the curtailment in absolute terms is lower in the low-PV scenario than in the 

high-PV (Flex. Nucl.) scenario since it has a much lower solar PV penetration level. In both 

cases, allowing wind and solar to provide reserves could contribute to reduce the curtailment of 

renewables and the overall cost of operation. However, we do not consider reserve provision 

from renewables or demand response in this case study, as pointed out above. 
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Figure 10.  HA Energy Schedule in Peak-Load Week, July 18–24, under the Low-PV 
(top) and High-PV (Flex. Nucl.) (bottom) Scenarios 
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Figure 11.  HA Energy Schedule in Minimum-Load Week, March 7–13, under the  
Low-PV (top) and High-PV (Flex. Nucl.) (bottom) Scenarios 

 

 

We also investigate the rescheduling of thermal generation between the DA and HA based on 

daily scheduling deviations (calculated as the HA schedule less the DA schedule in each hour, 

summed over a day). In total, there is a slight reduction in the thermal generation between DA 

and HA. This reduction is due to a bias in the load forecast, which is higher for DA compared to 

HA. For the individual technologies, Figure 12 shows that nuclear generation sees no change in 

the low-PV scenario since its dispatch is constant and only limited scheduling deviations in the 

high-PV (Flex. Nucl.) since nuclear is first in the dispatch order because of its low fuel cost. The 

coal and gas fired plants all see significant variations between the DA and HA schedules. In 

particular, CC and CT plants experience large negative deviations (i.e., HA schedule is lower 

than DA schedule) a few days of the year. Overall, the differences between the lowPV and high-

PV (Flex. Nucl.) scenarios are relatively small. A possible explanation is that the load-
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forecasting error on average is higher than the wind- and solar-forecasting errors on an absolute 

basis (Table 5). Hence, load-forecasting errors, which are the same in both scenarios, may be the 

main driver for re-dispatching needs between DA and HA in both scenarios.  

 

 

 

 

Figure 12.  Daily Deviation between HA and DA Energy Schedules for Main 
Thermal Technologies in Low-PV (top) and High-PV (Flex. Nucl.) (bottom) 
Scenarios 

 

 

The aggregate deviation between the DA and HA schedules is particularly important for 

understanding the impact of DA forecast errors on natural gas contracting and delivery. Natural 

gas purchases are made at the DA stage and only consumed in power plants during the operating 

day, as discussed in Section 2. Additional gas can be extracted from natural gas storage when the 

actual natural gas consumption over the day is larger than purchased or scheduled in the DA. 

Conversely, excess gas can be sent to storage when actual natural gas consumption is less than 

expected DA. Balancing natural gas using storage requires that adequate storage capacity is 
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available. The maximum daily withdrawals from natural gas storage or maximum daily 

injections into storage based on aggregate natural gas deviations between the DA and HA 

schedules are summarized in Table 19. These figures assume all the gas that is nominated on the 

DA but then not consumed in the HA is injected into storage or all excess gas consumption in the 

operating day is withdrawn from storage. For reference, the maximum daily natural gas 

consumption and average natural gas consumption are also shown. Note that EIA records show 

1.3 Bcf/day of maximum daily delivery capacity from natural gas storage facilities in the nearby 

states of New Mexico and Utah as of September 2012 (though none in Arizona) (EIA, 2013). 

The maximum storage injection and withdrawal both increase slightly between the low-PV and 

high-PV (Flex. Nucl.) scenarios although less gas is burned overall in the high-PV (Flex. Nucl.) 

scenario. These results indicate that the ratio of natural gas storage capacity to natural gas 

delivery capacity (and utilization) increases with a higher PV penetration. 
 

 

Table 19.  Natural Gas Consumption and DA vs. HA Schedule Deviations in the Low-PV and High-PV Scenarios 

Natural Gas Consumption Low-PV Scenario 

 
High-PV (Flex. Nucl.) 

Scenario 

   
Maximum daily natural gas consumption [Bcf/day] 0.69 0.58 

Average daily natural gas consumption [Bcf/day] 0.19 0.15 

Maximum daily withdrawal from storage [Bcf/day] 0.10 0.12 

Maximum daily injection to storage [Bcf/day] 0.27 0.28 

 

 

5.5 RT Deployment of Balancing Reserves and CPS2 Performance 
 

The additional balancing reserves held in the HA scheduling are available for deployment in RT 

to maintain a balance between supply and demand on a minute-by-minute basis (though 

contingency reserves must still be held in reserve during normal operations). Any deviations 

from the HA schedule not met by deployment of balancing reserves in RT lead to ACE. The 

ACE for the load-wind and the net load for the low-PV and high-PV scenarios are shown in 

Figure 13. 
 

(a) (b)  
Note: Blue bar represents the L10 parameter for APS, which is assumed to be 46 MW 

Figure 13.  ACE Resulting from a Mismatch between Deviations from the HA Schedule and Deployment of Balancing 
Reserves in RT in the Low-PV Scenario (a) and the High-PV Scenario (b) 
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In the low-PV scenario, the HA balancing reserves are sufficient to maintain a similar 

distribution of the ACE in the case with load and wind only and the case with the net load (load, 

wind, and PV). As a result, the final CPS2 score, which is based on the number of 10-min 

periods in which the ACE is within the tolerance band defined by the utilities L10 parameter, is 

similar for the case with the load-wind (a CPS2 score of 96.1%) and the case with the net load (a 

CPS2 score of 95.8%), as shown in Table 20. We also approximated the CPS1 score using 

several simplifying assumptions
19

 described in Appendix B. The approximated CPS1 score is 

well above the minimum required for compliance with NERC balancing standards (a minimum 

CPS1 score of 100) in both the low-PV and high-PV scenarios. From the perspective of the 

NERC balancing standard, the utility is just as reliable with PV as it is without PV in the low-PV 

scenario, as long as the additional balancing reserves identified in Figure 7 are provided during 

the HA scheduling. 

 

 
Table 20.  Resulting CPS2 Score for the Load-Wind and Net Load (load, wind, and PV) in 
the Low-PV and High-PV Scenarios 

 

 
CPS2 

(must be >90%) 

 
Approximate CPS1 

(must be >100) 

Scenario 
 

Load-Wind Net Load 
 

Load-Wind Net Load 

      
Low PV  96.1% 95.8%  184 182 

High PV  96.1% 92.6%  184 169 

 

 

In the high-PV scenario, the ACE appears to be slightly greater in magnitude for the net load 

compared to the load-wind alone, as shown in Figure 13. As a result, the CPS2 score in the high-

PV scenario for the net load is only 92.6%, compared to the CPS2 score of 96.1% for the load-

wind alone (Table 20).
20

 While the CPS2 score of 92.6% still exceeds the minimum score for the 

NERC balancing standard, the decrease does indicate that the system is somewhat less reliable in 

the high-PV scenario. In this case, we assumed the balancing reserves are set based on the 2.5
th

 

and 97.5
th 

percentile in of 1-min deviations and balancing reserves are assumed to be able to be 

fully deployed in 10-min. The use of these percentiles in developing balancing reserve rules 

appears to be adequate in the case of load and wind or load, wind, and low PV. However, the 

degradation of the CPS2 score in the high PV case may not be acceptable to a system operator 

that desires a larger buffer from the CPS2 score that would violate NERC reliability standards. 

We address this issue in Section 6 by changing assumptions regarding balancing reserves (both 

                                                 
19

 The CPS1 score is more difficult to estimate than CSP2 since CPS1 depends in part on the degree to which the 

overall interconnection is in balance. Overall balance of the interconnection is measured by the difference 

between the actual interconnection frequency and the target frequency (usually 60 Hz), also known as the 

frequency error. The CPS1 score only penalizes imbalances that worsen the overall interconnection-wide 

imbalance. We simplify the CPS1 score calculation by assuming that the historical correlation between 

imbalances at APS and the overall interconnection-wide imbalance is the same with or without PV. Using this 

assumption and estimates of various other parameters, we can approximate the CPS1 score using our estimate of 

the 1-min ACE.  
20

 Note that the same CPS2 score applies with both constant and fixed nuclear operations, since the same HA 

balancing reserve requirements are imposed in both cases. 
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in terms of the percentiles used to set the magnitude of balancing reserves and the rate of 

deployment of balancing reserves) in order to maintain a high CPS2 score with an without PV. 

 

 

5.6 Integration Costs 
 

The integration costs are estimated as the difference in the total cost in cases that account for DA 

uncertainty and the increase in balancing reserves in the HA scheduling and in cases that ignore 

those factors. In order to calculate the integration costs of PV, we simulate the system under 

three different assumptions, as explained in Section 3.5. Total costs under perfect conditions, 

TCp, assumes a perfect forecast for solar PV and no increase in HA balancing reserves. In 

contrast, TCHA refers to simulations with increased HA balancing reserves, and TCDA is the case 

that considers both increased HA balancing reserves and DA forecasting errors for solar PV. 

Total costs are primarily fuel and variable O&M costs, whereas start-up costs make up between 

3.0% and 4.5% of the total costs in these scenarios. Integration costs and the respective 

contributions from increased balancing reserves and DA forecast errors are then calculated from 

the differences among the three cases, divided by the total potential PV generation, as shown in 

Table 21. One caveat to note regarding these integration costs: the balancing reserves are 

sufficient to ensure that the CPS2 score is above the minimum threshold of 90% both with and 

without PV, but the CPS2 score is low compared to APS target levels and more importantly the 

CPS2 score does decrease with PV relative to the level for load and wind alone. The impact on 

the integration cost of increasing balancing reserves in order to maintain the CPS2 score with PV 

is explored in Section 6. 

 

 
Table 21.  Total Costs and Solar PV Integration Costs for Low-PV and High-PV Scenarios 

 
 

Total Cost, TC ($M/yr) 
 

Integration Cost ($/MWh-PV) 

Scenario TCp TCHA TCDA 

  
BR Increase (HA) 
(TCHA − TCp)/Epv 

Forecast Error (DA) 
(TCDA − TCHA)/Epv 

Total 
(TCDA − TCp)/Epv 

        
Low PV 888.4 894.1 895.1  1.61 0.27 1.88 

High PV 
(Const. Nucl) 

797.8 822.5 823.9  3.56 0.21 3.77 

High PV 
(Flex. Nucl.) 

777.9 785.6 790.0  1.11 0.63 1.74 

 

 

The estimated integration costs of PV are $1.88/MWh-PV in the low-PV scenario under the 

assumptions used in this study. Increasing the PV penetration in the high-PV (Const. Nucl.) 

scenario nearly doubles the integration cost to $3.77/MWh-PV. In both the high-PV and low-PV 

scenarios, the increased balancing reserves requirement is responsible for most of the integration 

cost, while the forecasting error plays a less significant role on average. 

 

Assuming that nuclear plants are flexible has a significant impact on the integration costs. The 

integration cost in the high-PV (Flex. Nucl.) scenario is only $1.74/MWh, less than half of the 

cost with constant nuclear under high-PV assumptions and also lower than in the Low-PV 
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scenario (which also assumes constant nuclear). This decrease in the integration cost is due to 

less costly provision of balancing reserves with flexible nuclear operations, resulting in a much 

lower balancing reserve portion of the integration costs. The forecast error costs actually increase 

with flexible nuclear compared to constant nuclear with high PV. 

 

Furthermore, the overall total operational costs are lower with flexible nuclear than the total 

costs with constant nuclear in the high-PV scenario partly because of the large decrease in 

curtailment of renewable energy, leading to more displacement of thermal generation. Based on 

the difference in costs for the constant nuclear scenario and the flexible nuclear scenario, the 

economic value of increased nuclear flexibility to the utility would be nearly $34 million per 

year with high PV penetration. 

 

The increase in operating costs from the increased balancing reserves and DA forecast errors do 

not occur uniformly on all days of the year. We further examine the two sources contributing to 

the total integration cost by looking at the daily increases in the total operating costs due to the 

BR increase and the DA forecasting errors in the low-PV and high-PV (Flex. Nucl.) scenarios 

(Figure 14). Higher BR increases operating costs on almost all days of the year, and the 

variability in the daily cost increase across the year is relatively small in both scenarios. The 

average increase in operating costs from the DA forecasting errors is smaller than the increase in 

costs from the BR, as previously noted. DA forecast errors even reduce operating costs on 40% 

and 34% of the days of the year in the low-PV and high-PV (Flex. Nucl.) scenarios 

respectively.
21

 However, in contrast to the relatively uniform increase in costs from BR, the 

increase in total cost due to the DA forecast error is more volatile. This is particularly noticeable 

in the high-PV (Flex. Nucl.) scenario where the cost increase due to the DA forecast error is very 

large for a few days. In fact, the maximum daily increase in costs from DA forecast errors is 

about four times as high as for the increased costs from BR, as shown in Figure 14. In contrast, 

the maximum costs due to BR and DA forecasting errors are at about the same level for the low-

PV scenario. These results indicate that even though the increased BR makes up the majority of 

the integration cost over the year, the impact of forecasting errors may pose a higher risk for the 

utility because it is unpredictable and can be very high for some days.  

 

 

                                                 
21

 A likely explanation for the cost reduction is that solar PV forecasting errors sometimes will counter the wind- 

and load-forecasting errors and therefore lead to a reduction in net-load forecasting error. 
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Figure 14.  Daily Increases in Total Costs due to HA BR Increase and DA 
Forecast Errors for Low-PV (top) and High-PV (Flex. Nucl.) (bottom) 
scenarios in 2027 
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6 Sensitivity Cases 
 

We conduct a number of sensitivity cases to understand the degree to which the findings in the 

previous section change if some of the current practices at APS (e.g., avoidance of economic 

curtailment of renewables) are reflected in the integration cost estimates, and also to ascertain the 

robustness of the estimates to changes in various uncertain parameters. The sensitivities are 

separated into three groups. The first group simply examines the impact of changing the 

historical weather year from 2005 to 2004 in the low-PV scenario. The second group explores a 

wide range of different parameters, one at a time, using the high-PV (Flex. Nucl.) scenario as the 

benchmark. Finally, the third contemplates a worst-case scenario in which several parameters are 

changed at the same time in the high-PV (Const. Nucl.) scenario to further restrict the flexibility 

of the system. The purpose of this worst-case scenario is to develop an upper bound to potential 

integration costs and further highlight the potential economic costs associated with restrictions 

on flexibility. 

 

 

6.1 Sensitivity to Change in Historical Weather Year in the  
Low-PV Scenario 

 

We test the sensitivity of the results to the choice of historical weather year by re-creating the 

low-PV scenario with historical weather data from 2004 instead of 2005. Changing the weather 

year has no significant impact on the maximum and average balancing reserve requirement, as 

shown in Table 22. Similarly, changing the weather year has no significant impact on renewable 

curtailment, unmet spinning reserve requirements, and CPS2 performance. The annual 

curtailment of renewables remains at around 3% of the potential renewables with 2004 weather 

data whereas the unmet spinning reserve requirement decreases with 2004 weather data. The 

CPS2 score for the net load increases in the low-PV scenario from 95.8% with 2005 weather data 

to 96.1% with 2004 weather data. 

 

 
Table 22.  Sensitivity of Balancing Reserve Rules to Choice of Historical Weather Year 

 
Maximum Balancing Reserve 

up in HA (MW) 

 
Average Balancing Reserve 

up in HA (MW) 

  
Maximum Balancing Reserve 

down in HA (MW) 

Case 
 

Load-Wind Net Load 
 

Load-Wind Net Load 
 

Load-Wind Net Load 

         
Low-PV 187 278  132 171  132 171 

2004 weather  187 275  130 170  130 170 

 

 

The choice of historical weather year (and hence historical load conditions) has a large impact on 

total costs. The use of 2004 weather conditions instead of the historical 2005 weather year leads 

to a large drop in total costs (Table 23), mainly because of lower loads in 2004. The estimated 

integration costs decline by $0.21/MWh-PV with 2004 conditions. The lower load with 2004 

conditions reduces the cost of providing additional reserves, and does not change the cost of 

making up for DA forecast errors. 
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Table 23.  Total Cost and Estimates of Integration Costs for the Low-PV Scenario and 2004 Weather Sensitivity Case 

 
 

Total Cost (TC) ($M/yr) 
 

Integration Cost ($/MWh-PV) 

Case 

 
TCp TCHA TCDA 

 
BR Increase (HA) Forecast Error (DA) Total 

        
Low-PV 888.4 894.2 895.2  1.61 0.27 1.88 

2004 weather 804.8 809.9 810.8  1.40 0.27 1.67 

 

 

6.2 Sensitivity to Change in Individual Parameters in the High-PV 
(Flex. Nucl.) Scenario  

 

While operations with PV in the low-PV scenario were found to be relatively similar to the 

operations for load and wind alone, the high-PV scenario highlighted potential challenges. The 

most dramatic impact occurred in the high-PV (Const. Nucl.) case where we found large 

curtailment of renewable energy during low net-load periods and also challenges in meeting the 

required BR in a few hours. These operational challenges need to be addressed for a scenario 

with high PV. One possible approach is to allow nuclear units to be dispatched down and provide 

spinning reserves, as discussed in the previous chapter. We leave exploration of other options to 

increase system flexibility to future research, and restrict the sensitivity analysis in this section to 

cases based on the high-PV (Flex. Nucl.) scenario. To some extent, we can expect that if other 

solutions provide system flexibility of the same magnitude, the other solutions should have 

similar impacts on the results as flexible nuclear. 

 

Even after addressing the large curtailment with constant nuclear operation, several additional 

issues remain to be examined. One important issue is the decrease in the CPS2 score with high-

PV. A second concern is the remaining curtailment of renewables even with flexible nuclear. A 

third issue is that several parameters, such as fuel prices, are uncertain. In this section, we 

address these remaining issues by examining several sensitivities that vary BR rules, thermal 

plant flexibility, and penalties for renewable curtailment. We also examine the impact of 

different fossil fuel prices and the degree to which including load and wind variability and 

forecast errors affects the costs of managing PV variability and forecast errors. The sensitivity 

scenarios are categorized and summarized in Table 24. The assumption of flexible nuclear plant 

operations apply to all these cases in Table 24. 
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Table 24.  Overview of Sensitivity Cases for High-PV (Flex. Nucl.) 2027 Scenario 

 
Category Case Description 

   
Flexible nuclear  High-PV (Flex. Nucl.) Base assumptions for high-PV (Flex. Nucl.) 2027 scenario 

 
Balancing reserves 
(BR) 

Increase BR for PV Use 1st and 99th percentiles of deviations from PV HA 
schedules to set BR (but continue to use 2.5th to 97.5th 
percentiles for load and wind deviations. 
 

Increase BR for all  Greatly increase BR for all by using 0.1st and 99.9st 
percentiles of deviations from PV, wind, and load HA 
schedules to set BR rules. 
 

Fast BR Require faster deployment rate of BR (5-min instead of  
10-min response time). 
 

Flexibility Low ramping Assume ramp rates for thermal generators are lower (use 
average ramp rates instead of maximum block ramp rates). 
 

Minimum renewables 
curtailment 

Minimize curtailment of renewable energy by adding a high 
curtailment penalty ($10,000/MWh) in objective function of 
commitment and dispatch model. 
 

Fuel prices High gas price Assume natural gas price increases by 25% from 
$5.85/MMBtu to $7.31/MMBtu. 
 

Low gas price Assume natural gas price decreases to $4.00/MMBtu and 
coal price increases from $1.96/MMBtu to $3.00/MMBtu. 
 

Forecasting Perfect wind/load Assume perfect DA and HA forecasts for wind power and 
load in commitment and dispatch model. 

 

 

6.2.1 Change in Balancing Reserves and CPS2 Score 
 

Among the sensitivity cases in Table 24, only the ones in the balancing reserves category change 

the BR rules and CPS2 scores. We investigate three sensitivity cases that are designed to 

maintain a higher CPS2 score in the high-PV (Flex. Nucl.) scenario for the net load: 

(1) moderately increase balancing reserve requirements related only to PV deviations from the 

HA schedule; (2) greatly increase balancing reserves for PV, wind, and load; and (3) require a 

higher rate of deployment of the original high-PV scenario balancing reserves. 

 

By increasing the percentiles of the deviations used to establish the BR rules to the 1st and 99th 

percentiles for PV, the maximum and average balancing reserve requirement in the up direction 

are increased by 15% and 21%, respectively. As a result, the CPS2 score for the net load 

increases to 94.0% (Table 25), a score that again meets minimum standards for NERC but is still 

below the historical performance for APS. 

 

Further increasing the balancing reserves by using the 0.1th and 99.9th percentiles for deviations 

of PV, load, and wind increases the CPS2 score to 99.6% for load-wind and 98.1% for the net 

load with high PV. The reserves required to manage this high CPS2 score, however, are 

significantly greater than the reserves required in the benchmark high-PV (Flex. Nucl.) scenario, 

as the maximum and average balancing-up requirement increase by 82% and 89%, respectively. 
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However, if we assume that non-spinning reserves are capable of deployment after 10 min and 

that spinning reserves therefore are needed only for deviations that occur within 10 min, then the 

balancing-up reserve that needs to be met by spinning reserves is only a portion of this maximum 

balancing reserve up requirement—the remainder can be met with non-spinning reserves. 

Examination of the deviations shows that spinning reserves must be used for the first 737 MW 

balancing-up reserves and that any of the remaining 276 MW of balancing-up reserves can be 

non-spinning resources that are only available after 10 min. These sensitivities show that the 

reliability of the utility system can be maintained with high PV penetration in part by increasing 

the amount of balancing reserves held in the HA scheduling. 

 

The disadvantage of increasing the balancing reserve requirements is that it increases the 

integration costs associated with PV (Table 26) and increases renewable curtailment (Table 27). 

In particular, increasing the balancing reserve requirements for load, wind, and PV in order to 

achieve a 98.1% CPS2 score doubles the integration cost to $4.41/MWh and also increases the 

total operating cost by $25M/yr. The increase in the integration cost is entirely due to the 

balancing reserve portion of the integration costs (the DA forecast error component slightly 

declines). Increasing the balancing reserve requirement for load, wind, and PV also almost triples 

the renewables curtailment to more than 9% annual curtailment of renewables. Increasing 

reserves for PV only also significantly increase integration costs and renewable curtailments, 

although to a much lesser extent. 

 

 
Table 25.  BR Requirements and CPS2 Score in Sensitivity Cases for the High-PV Scenario  

 CPS2 Score 

  
Maximum Balancing Reserve 

up in HA (MW) 

 
Average Balancing 

Reserve up in HA (MW) 

Sensitivity for High-PV 
Scenario 

 
Load-Wind Net Load 

 
Load-Wind Net Load 

 
Load-Wind Net Load 

         
High PV (Flex. Nucl.) 96.1% 92.6%  187 556  132 241 

Increase BR for PV 96.1% 94.0%  187 641  132 292 

Increase BR for all  99.6% 98.1%  359 1014  223 456 

Fast BR 97.8% 95.3%  187 556  132 241 

 

 
Table 26.  Total Cost and Estimated Integration Costs in BR Sensitivity Cases of the High-PV (Flex. Nucl.) Scenario 

 
 

Total Cost (TC) ($M/yr) 
 

Integration Cost ($/MWh-PV) 

Case TCp TCHA TCDA 
  

BR Increase (HA) Forecast Error (DA) Total 

        
High PV (Flex. Nucl.) 777.9 785.6 790.0  1.11 0.63 1.74 

Increase BR for PV 777.9 792.3 796.7  2.08 0.63 2.71 

Increase BR for all  784.2 811.7 814.8  3.96 0.45 4.41 

Fast BR 782.6 798.4 800.4  2.27 0.29 2.56 
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Table 27.  Renewable Curtailment in the BR Sensitivities to the High-PV(Flex. 
Nucl.) Scenario 

Sensitivity for High-PV 
Scenario 

 
Renewables Curtailment 

 
[GWh/yr] Percentage of Potential 

   
High PV (Flex. Nucl.) 299 3.4 

Increase BR for PV 424 4.8 

Increase BR for all  810 9.1 

Fast BR 420 4.7 

 

 

An alternative option is to increase the rate of deployment of the balancing reserves. In the 

benchmark high-PV (Flex Nucl.) scenario, we assumed balancing reserves are primarily met by 

spinning resources that could be fully deployed in 10 min. In this sensitivity case we assume that 

the balancing reserves are met by resources that can be fully deployed in 5 min. As in the 

benchmark high-PV scenario, we use the 2.5th and 97.5th percentile of deviations for load, wind, 

and PV to define the magnitude of the balancing reserves held in the HA scheduling. The 

maximum and average balancing reserve requirement in the up direction remains similar to the 

requirements in the high-PV scenario (Table 25). The CPS2 score for the net load increases to 

95.3% in the case with a faster rate of deployment of balancing reserves. The increase in CPS2 

score indicates that the ACE in the high-PV case is not primarily due to insufficient balancing 

reserve capacity but to insufficient ability for the balancing reserves to keep up with deviations 

from the HA schedules. Increasing the rate at which balancing reserves can be deployed results 

in a lower ACE and a higher CPS2 score. 

 

The disadvantage of the requirement that balancing reserves be able to be deployed rapidly is 

that it reduces the pool of generation resources that can contribute to the balancing reserves in 

the HA scheduling. Similar to the two cases with increased BR, the fast BR case also increases 

the integration cost (up to $2.56/MWh) by increasing the BR portion, as shown in Table 26. 

However, while comparing the fast BR case with the increase BR for PV case, note that the fast 

BR case obtains a higher CPS2 score whereas the estimated integration cost is lower than in the 

increase BR for PV case. Overall it appears that there are several options that can increase the 

CPS2 score, but each at the cost of increasing the integration cost for PV, as shown in Figure 15. 
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Figure 15.  Tradeoff Between Balancing Performance (CPS2 Score for Net 
Load) and Integration Cost of PV  

 

 

The detailed results show that the utility system is sufficiently flexible (in terms of high ramp 

rates of generation capacity) that more than 99.999% of the spinning reserve requirement 

continues to be met in the HA scheduling, even after increasing the rate at which balancing 

reserves are deployed in the high-PV (Flex. Nucl.) scenario. The curtailment of spinning reserve 

up also remains insignificant in the two cases with increased BR. Curtailment of spinning reserve 

down does not occur in any of the three cases related to balancing reserves. 

 

 

6.2.2 Impact of Changes in Flexibility 
 

The sensitivity cases in the flexibility category test the impact of assuming lower ramp rates for 

thermal generators and the inclusion of a high penalty for renewables curtailment in the 

commitment and dispatch model. 

 

Decreasing the assumed ramp rates for thermal generators increases the integration cost only 

slightly (Table 28), but gives a more significant increase in the renewables curtailment 

(Table 29). Decreasing the ramp rate of thermal generators has no significant impact on the 

amount of unmet spinning reserves. The minimum renewables curtailment sensitivity introduces 

a large penalty for renewables curtailment in the commitment and dispatch model. This penalty 

ensures that renewables curtailment occurs only when it would otherwise cost the system more 

than $10,000/MWh to prevent the curtailment of renewables. Introducing this penalty does 

decrease curtailment relative to the benchmark high-PV (Flex. Nuclear) scenario (Table 29), but 

curtailment still occurs. The estimated integration cost increases to $1.85/MWh in this case with 

lower renewables curtailment. Overall, the case with the minimum renewables curtailment has 

higher operating costs than the benchmark high-PV (Flex. Nucl.) case, indicating that economic 

curtailment of such resources make sense during surplus conditions. Some renewables 
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curtailment is still necessary with high PV penetration and flexible nuclear with the other 

assumptions that the utility is not connected to a broader market, some coal plants are must-run, 

and renewables cannot provide balancing down reserves. In reality, APS is connected to other 

utilities, and it may be prudent to find other buyers for its power during low-net-load periods 

with high PV if possible or examine other potential sources of flexibility. Another observation is 

that there is a significant amount of spinning reserve down curtailment in the minimum 

renewables curtailment case, that is, the reserve-down constraint is violated as much as 

707 hours of the year and the total annual curtailment is 8% of the down-reserve requirement. 

This is explained by the very high penalty assigned to renewables curtailment, which is actually 

higher than the penalty of $9,900/MW-h for violating the reserve requirements. Hence, in this 

case the model prioritizes using renewable energy ahead of maintaining sufficient balancing 

reserves. 

 

 
Table 28.  Total Cost and Estimated Integration Costs in Balancing Reserve Sensitivity Cases of the High-PV (Flex. 
Nucl.) Scenario 

 
 

Total Cost (TC) ($M/yr) 
 

Integration Cost ($/MWh-PV) 

Case 

 
TCp TCHA TCDA 

 
BR Increase (HA) Forecast Error (DA) Total 

        
High PV (Flex. Nucl.) 777.9 785.6 790.0  1.11 0.63 1.74 

Low ramping 786.3 795.9 799.1  1.39 0.46 1.85 

Min renewables 
curtailment 

779.1 788.2 794.1  1.32 0.86 2.18 

 

 
Table 29.  Renewable Curtailment in the Flexibility Sensitivities to the High-PV (Flex. 
Nucl.) Scenario 

Sensitivity for 
High-PV Scenario 

 
Renewables Curtailment 

[GWh/yr] 

 
Percentage of 

Renewable Energy 

   
High PV (Flex. Nucl.) 299 3.4 

Low ramping 351 4.6 

Min renewables curtailment 82 0.9 

 

 

6.2.3 Change in Fuel Prices 
 

The fuel price sensitivity cases examine the impact of increasing the assumed natural gas price 

by 25% (bringing it in line with APS projections of natural gas prices in 2027) and decreasing 

the natural gas price by 25% while simultaneously increasing the price of coal. The price of coal 

is increased in the low gas price sensitivity to the point that a typical CC plant and a typical coal 

plant have similar marginal costs. Increasing the natural gas price by 25% increases the 

integration cost by 11% to $1.93/MWh (Table 30). Decreasing the natural gas price by 25% (and 

increasing the cost of coal) lowers the integration cost by 41% to $1.02/MWh. The DA forecast 
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error cost and the cost of HA balancing reserves change in similar proportions to the overall 

change in integration costs with lower natural gas prices. 

 

Increasing the natural gas price by 25% increases the renewables curtailment slightly (Table 31). 

In contrast, decreasing the natural gas price and increasing the cost of coal reduces the 

renewables curtailment by 12%. Changing the fuel price assumptions had no noticeable impact 

on the amount of unmet spinning reserves. 

 

 
Table 30.  Total Cost and Estimated Integration Costs in Fuel Price Sensitivity Cases of the High-PV Scenario 

 
 

Total Cost (TC) ($M/yr) 
 

Integration Cost ($/MWh-PV) 

Case 

 
TCp TCHA TCDA 

 
BR Increase (HA) Forecast Error (DA) Total 

        
High PV (Flex. Nucl.) 777.9 785.6 790.0  1.11 0.63 1.74 

High gas price 869.7 878.9 883.1  1.32 0.61 1.93 

Low gas price 785.5 790.4 792.6  0.72 0.30 1.02 

 

 
Table 31.  Renewables Curtailment in the Fuel Price sensitivities to the High-PV 
(Flex. Nucl.) Scenario 

Sensitivity for High-PV 
Scenario 

 
Renewables Curtailment 

 
[GWh/yr] Percentage of Potential 

   
High PV (Flex. Nucl.) 299 3.4 

High gas price 311 3.5 

Low gas price 264 3.0 

 

 

6.2.4 Removing Load and Wind DA Forecast Errors 
 

We examine the degree to which load and wind DA forecast errors affect the results in the high-

PV (Flex. Nucl.) scenario by including only PV forecast errors in the model. This has no 

noticeable impact on the renewables curtailment and on the unmet spinning reserves. It does, 

however, increase the estimated integration cost by 4% to $1.81/MWh, mainly due to higher cost 

from the DA forecast error (Table 32). The increase in the integration costs when load and wind 

forecast errors are ignored is likely due to situations in which forecast errors for solar PV and 

wind or load cancel each other out, an effect that disappears when load and wind forecasts are 

perfect. The result illustrates that it is important to consider forecasting errors for all renewable 

resources as well as load, in estimating integration costs. 
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Table 32.  Total Cost and Estimated Integration Costs in Forecast Sensitivity Cases of the High-PV (Flex. Nucl.) 
Scenario 

 
 

Total Cost (TC) ($M/yr) 
 

Integration Cost ($/MWh-PV) 

Case 
 

TCp TCHA TCDA 
 

BR Increase (HA) Forecast Error (DA) Total 

        
High PV (Flex. Nucl.) 777.9 785.6 790.0  1.11 0.63 1.74 

Perfect wind/load 772.8 780.6 785.3  1.13 0.68 1.81 

 

 

6.2.5 Summary of Single-Parameter Sensitivity Cases Based on the High-PV 
(Flex. Nucl.) Scenario 

 

With flexible nuclear plants and high PV, the renewables curtailment varies with the sensitivity 

cases between 0.9% and 9.1% of the renewable potential (Figure 16). Curtailment is lowest in 

the case in which there is a penalty in the commitment and dispatch model for curtailing 

renewables. The fact that curtailment occurs even with a large penalty (and the earlier finding 

that curtailment greatly increases with inflexible nuclear plants) suggests that APS should 

prepare to find buyers for its power during low net-load periods, work to increase the flexibility 

of its coal and nuclear facilities, increase demand response, and/or develop ways to provide 

balancing down from renewables in scenarios with high PV penetration. 

 

 

 

Figure 16.  Renewable Energy Curtailment as a Percentage of Total Available 
Resources for High-PV (2027) Sensitivity Cases  
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The integration costs also varied with the sensitivity cases (Figure 17). The lowest integration 

cost is $1.02/MWh with low natural gas prices and higher coal prices, while the highest is 

$4.41/MWh with the assumption of very high balancing reserves. Across all sensitivity cases to 

the high-PV (Flex. Nucl.) scenario, the integration cost due to DA forecast error is consistently 

lower than the balancing reserve costs. Finally, Figure 18 summarizes the total operating costs, 

accounting for both DA forecast errors and increased BR, for the different sensitivity cases. The 

cases with more stringent BR all lead to higher costs of operation. Less flexibility also 

contributes to cost increases. Not surprisingly, a higher gas price gives a substantial increase in 

generation costs, whereas the cost reduction in the low gas-price case is offset by the assumed 

increase in coal price in that case. Perfect wind and load forecasts give a small reduction in total 

operating costs, although the integration cost estimate in that case is slightly higher than that in 

the baseline high-PV (Flex. Nucl.) scenario. 

 

 

 

Figure 17.  PV Integration Cost Estimates for High-PV (2027) Sensitivity Cases  
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Figure 18.  Total Cost Estimates for High-PV (2027) Sensitivity Cases 

 

 

6.3 Worst-Case Sensitivity with High PV 
 

Under the assumption that the utility is not able to buy and sell power with other markets, the 

results presented so far indicate that flexibility in nuclear plants, other thermal generators, and 

renewables are all important to managing high PV penetrations. We wanted to establish an upper 

bound to the integration costs with high PV penetration by evaluating an extreme sensitivity case 

in which none of this flexibility is available. In this worst-case scenario, we assume constant 

nuclear operation (without the ability to provide reserves), penalties for renewables curtailment, 

and low ramp rates of non-nuclear thermal generation. We also use the 0.1th and 99.9th 

percentile of load, wind, and PV deviations from the HA schedule to set the BR requirements, 

similar to the increase BR for all sensitivity case. The results are compared to both the high-PV 

(Flex. Nucl.) and high-PV (Const. Nucl.) scenarios in Table 33 and Table 34. 

 

The combination of these severe constraints on flexibility leads to a greatly increased total cost 

overall and an increase in the estimated integration cost to more than $9.5/MWh. The increase in 

the integration cost is due entirely to an increase in the BR costs, as the DA forecast error costs 

remains at a relatively modest level. The renewables curtailment is again very high (10.5%), but 

still considerably lower than in the high-PV (Const. Nucl.) scenario since there is now a high 

penalty for curtailment of renewables. Although this penalty increases the utilization of 

renewable energy it contributes to increase the integration cost, along with the increased BR 

requirements and lower ramp rates for thermal generators. 

 

Beyond the economic impacts of this inflexibility, the combination of assumptions also affects 

reliability. The unmet spinning reserves in most previous cases were minimal even with high PV 
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penetration, the main exception being the minimum renewables curtailment case, which has a 

large curtailment of spinning reserve down, as discussed above. In the worst case, however, the 

unmet spinning reserves up increases to more than 41,000 MW-h/yr (1.5% of the total 

requirement). The unmet spinning reserves-down is also significant, at 1,730 MW-h/yr (0.1% of 

the total requirement). The spinning reserves-up requirement is not met in 13% of the hours of 

the year, and the spinning reserve down requirement is not met in 2% of the hours of the year. As 

a result, the CPS2 score could suffer under these extreme assumptions, because the commitment 

and dispatch model was not able to meet the BR requirement in a nontrivial fraction of the hours. 

 

This worst-case result indicates that a combination of low ramping rates for thermal plants, 

constant nuclear output, penalties for renewables curtailment, and very high BR, along with the 

default assumptions of no trading with neighboring utilities and must-run coal units, would result 

in considerable reduction in system reliability because of the lower amount of flexibility in the 

system. The worst-case result clearly illustrates the importance of flexibility, from both the 

reliability and cost perspectives.
22

 

 

 
Table 33.  Total Cost and Estimated Integration Costs in the Worst-Case Sensitivity of the High-PV Scenario 

 
 

Total Cost (TC) ($M/yr) 
 

Integration Cost ($/MWh-PV) 

Case 
 

TCp TCHA TCDA 
 

BR Increase (HA) Forecast Error (DA) Total 

        
High PV (Flex. Nucl.) 777.9 785.6 790.0  1.11 0.63 1.74 

High PV (Const. Nucl.) 797.8 822.5 823.9  3.56 0.21 3.77 

Worst case 831.5 894.1 897.6  9.05 0.50 9.55 

 

 
Table 34.  Renewable Curtailment in the Worst-Case Sensitivity to the High-PV 
Scenario 

Sensitivity for High-PV 
Scenario 

 
Renewables Curtailment 

[GWh/yr] 

 
Percentage of 

Renewable Energy 

   
High PV (Flex. Nucl.) 299 3.4 

High PV (Const. Nucl.) 1587 17.8 

Worst case  934 10.5 

 

  

                                                 
22

 Note that total costs increase substantially even if the impact of reduced reliability due to the substantial reserve 

shortfalls is not considered in the total cost calculations. 
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7 Conclusions and Future Work 
 

Utilities can manage short-term variability and DA forecast uncertainty of PV through several 

sources of flexibility available in existing operating practices. These practices include re-dispatch 

of committed generation units, commitment of peaking units within the operating day, and 

holding additional resources in reserve during HA scheduling to be deployed in RT. Managing 

variability and uncertainty through these methods is not without cost. In this report, we present a 

comprehensive analytical framework for measuring the cost and reliability implications of the 

bulk power system under a high penetration of renewable energy. We also quantify these costs 

through a case study based on the projected generation portfolio of APS in 2027 with a solar PV 

resource of 8.8% of annual demand (low-PV scenario) and 17.0% of annual demand (high-PV 

scenario). Both scenarios also consider a wind resource of 4.9% of annual demand. We conduct a 

detailed sensitivity analysis of system reliability and cost under different assumptions about 

balancing reserves, system flexibility, fuel prices, and forecasting errors. 

 

 

7.1 Main Findings 
 

An important criterion for managing increased amounts of PV is to maintain reliability as 

measured by NERC balancing standards. We develop hourly balancing reserve requirements 

based on statistical analysis that can be used by utilities in the HA scheduling process to ensure 

that sufficient resources are available within the operating hour to manage deviations from the 

HA schedule. Increased variability and uncertainty from PV lead to an increase in these HA 

balancing reserve requirements. We used simulated minute-by-minute deviations from HA 

schedules developed from an earlier weather year to create the balancing reserve requirements to 

use in the simulated operating year. As PV generation in utility systems increases, utilities may 

similarly find it helpful to begin collecting information on actual deviations from schedules to 

develop balancing reserve requirements that match their system conditions. 

 

As long as low net-load events are managed and the HA balancing requirements are available, 

the CPS2 score of the utility continues to exceed the minimum NERC requirement in all cases 

examined. In cases with low PV penetration and HA balancing reserves based on the 2.5
th

 and 

97.5
th

 percentile of deviations from the HA schedule, CPS2 performance is similar with or 

without PV. Maintaining equivalent CPS2 performance in the high-PV scenario (which 

introduces several additional large utility-scale PV plants) is found to be more challenging. In 

order to maintain CPS2 performance with high PV, either the rate at which balancing reserves 

are deployed needs to be increased or the amount of balancing reserves held needs to be further 

increased. Both options increase operating costs significantly relative to simply allowing CPS2 

performance to be reduced to below its level without PV (though still above the NERC minimum 

requirement of 90%). 

 

In the low-PV scenario we found that the operational challenges are relatively modest and 

estimate the integration cost to be $1.88/MWh-PV at a CPS2 score of 95.8%. In the high-PV 

scenario, however, we find the operational challenges more substantial and we estimate the 

integration cost to be $3.77/MWh-PV at a lower CPS2 score of 92.6%. In the high-PV scenario, 
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curtailments of renewable energy reach a very high level (17.8% of the total resource) and it also 

becomes challenging to meet the increased BR requirements in a few hours of the year. These 

results rely on several conservative assumptions about system flexibility, including no trading 

with neighboring utilities, no demand response, all operating reserves (both up and down) 

provided by thermal power plants, several must-run coal plants, and constant output from all 

nuclear plants. In the high-PV scenario we relax the latter assumption and find that with flexible 

nuclear plants providing both energy and reserves the integration cost drops substantially to 

$1.74/MWh-PV. Flexible nuclear dispatch also reduces the curtailment of renewables to 3.4% of 

the total resource, indicating that the increased system flexibility makes it much easier to absorb 

high solar PV penetration levels. Other sources of system flexibility, not investigated in this 

study, are also likely to reduce the integration cost and mitigate operational challenges. 

 

For the low-PV scenario, our sensitivity analysis shows that the choice of reference year may 

have significant impact on total costs as well as integration costs. Using historical data from 

2004 instead of 2005 gave a reduction in the integration cost by $0.21/MWh-PV to $1.67/MWh-

PV due to lower loads in 2004. 

 

For the high-PV scenario we mainly focused the sensitivity analysis on the case with flexible 

nuclear operations. We found that system reliability can be improved either by increasing the 

balancing reserves or by requesting that they respond faster. However, this comes at the expense 

of higher integration costs and also more curtailment of renewable energy. In the case with the 

highest reserve requirements, the CPS2 score improved to 98.1%, but both the integration cost 

and the curtailment of renewable almost tripled to $4.41/MWh-PV and 9.1% respectively. We 

also investigated reductions in system flexibility. A case with lower hourly ramp rates for 

thermal generators saw only a small increase in the estimated integration costs. In another case 

we minimized the amount of renewable curtailment by adding a high curtailment penalty to the 

objective function of the UC/ED model. We found that the renewable curtailment dropped to less 

than 1%, but this came at an increase in the integration cost from $1.74/MWh-PV in the high-PV 

(Flex. Nuclear) case to $2.14/MWh-PV. Hence, we conclude that some economic curtailment of 

renewables during challenging periods make sense from a cost perspective. In other sensitivity 

cases we found that a higher gas price increases the integration costs, and vice versa for a lower 

gas price. We also found that if a perfect forecast for load and wind is assumed the total 

operating cost decreases slightly, but the estimated PV integration cost actually increases since 

the possibility of wind, load, and solar PV forecasts cancelling each other out is not considered. 

Across all the sensitivity cases the primary contributor to the integration cost is the increase in 

balancing reserves due to short-term variability and forecast uncertainty, whereas the cost from 

DA forecast errors plays a less significant role. 

 

We also constructed a case with several severe constraints on system flexibility, including 

constant nuclear operation (without the ability to provide reserves), penalties for renewables 

curtailment, low ramp rates of non-nuclear thermal generation, along with the highest balancing 

reserve requirements. In this worst-case scenario we found that the integration cost did not 

exceed $10/MWh-PV, although the case did highlight the severe challenges with absorbing all 

the PV generation with limited flexibility and without the ability to sell excess power to nearby 

utilities.  
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From the dispatch results, we found that the most challenging conditions identified with high PV 

penetration occur during periods of low net load. Low net load occurs during winter and spring 

months in daytime hours with high PV penetration. Under the assumption that the utility is not 

able to sell surplus power to neighboring utilities during these periods, managing the low net-

load periods requires increased flexibility beyond what is available through current practices. We 

find that both economic curtailment of renewables and flexibility of nuclear plant operations are 

valuable. 

 

Under the default assumption of fixed nuclear operation, all operating reserves are provided by 

the other thermal generators. The dispatch results shows that the gas CC plants are the largest 

contributor to spinning reserve up, whereas coal plants are the largest contributor to spinning 

reserves down. Under the relaxed case with flexible nuclear, the nuclear plants also make 

significant contributions to reserves, particularly in the down direction with 33% of the HA 

down reserves coming from nuclear plants with high-PV. Even with an increase in the balancing 

reserve requirement, the utility system is always found to have a capacity surplus (before 

accounting for outages of thermal plants). This ample supply of generation capacity is likely to 

explain in part the relatively low range of integration costs found in this study. 

 

 

7.2 Limitations and Future Work 
 

This case study does have a number of limitations that should be considered when these 

conclusions are examined. Simulations of future deployments of variable generation are always 

challenging because of the need to synthesize high-time resolution production and forecasts that 

reflect geographic diversity. The methods used in this study to synthesize 1-min PV production 

data are based on existing methods described elsewhere for wind, but not otherwise applied to 

PV. This dataset was not validated in the current project, though this is recommended for future 

work. Anomalies in the data that may overstate short-term PV variability are noted and described 

in Appendix A.  

 

There are also limitations based on the simplifications used in this study to model actual 

strategies and procedures used by utilities. One such limitation is that unit commitment decisions 

are made only in the DA schedule based on DA forecasts and again in the HA schedule for 

peaking units based on HA forecasts. In reality utilities can commit or decommit units during the 

operating day in response to changing conditions and updated forecast information. Hence, the 

modeling approach in this study likely understates the intra-day flexibility available from the 

thermal generators. On the other hand, the revised dispatch and commitments in the HA schedule 

were made with a single run of the optimization model over a 24-hr period. In reality, a utility 

does not know what will happen in hour 2 when making dispatch and quick-start commitment 

decisions for hour 1. This modeling assumption may understate the costs of managing variability 

and uncertainty. Finally, the RT simulation only considered the available HA reserves without 

actually conducting a RT dispatch of the individual plants. Representation of intra-day 

commitment and more detailed HA and RT processes would all contribute to better reflect actual 

utility operations. 
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Transmission constraints within the utility footprint also were not included in this analysis. This 

limitation may overstate the ability of resources within the APS system to provide the required 

energy and reserves to meet the load within the system. Another limitation is that the thermal 

plant characteristics were developed from publicly available datasets and likely differ from true 

plant performance. Moreover, we did not remove any thermal generation capacity from the low-

PV portfolio when increasing the amount of PV in the high-PV scenario. If the utility assigns a 

non-zero capacity credit to the incremental PV additions, some of the thermal generation 

capacity may not be available. Moreover, the optimal mix of thermal technologies may also 

change as flexible resources become more desirable with higher renewable penetration levels. 

These limitations should be addressed when refining the estimates of the impact of PV on system 

operations, cost, and reliability. 

 

Another large limitation of this case study is not modeling the potential for trading and exchange 

outside of the utility boundaries with other entities in WECC. The lack of a representing outside 

exchange may overstate the challenges with low net-load periods, particularly if neighboring 

utilities are adding less PV to their systems. In fact, since most curtailment of renewables happen 

during day-time and sunlight, it may be possible to sell surplus power to other utilities with 

higher net loads during those hours. This is in contrast to the situation with high wind penetration 

levels, since it is likely more challenging to sell excess nightly energy. Considering outside 

power exchange, ideally by modeling a wider geographic footprint or by introducing a 

representative market node in the UC/ED model, should lead to better estimates of operating and 

integration costs. 

 

For APS, inclusion in any of the proposed Energy Imbalance Markets (EIM) currently being 

examined in the Western Interconnection could provide access to more outside flexibility that 

might prevent significant amounts of renewables curtailment, and also reduce the costs 

associated with sub-hourly solar variability. Another interesting industry development is that the 

NERC Board of Trustees recently approved a new balancing standard that would replace the 

CPS2 with an alternative reliability metric. This new balancing standard may also alter the 

balancing reserve requirements in scenarios with high PV. 

 

Overall, we only investigated a small subset of the potential future sources of system flexibility 

in this study. Additional sources for flexibility include demand side programs that shift load into 

low net-load periods or energy storage. Denholm and Margolis (2007a,b) highlighted challenges 

of managing low net-load periods with increased PV penetration and the potential role for 

curtailment, load shifting, and storage. Botterud et al. (2013) showed that price responsive 

demand for energy could contribute to lower operating costs and less curtailment of renewable 

energy, as shown in Botterud et al. (2013). Demand resources can also contribute to provision of 

operating reserves, and this is already current practice for several system operators in the United 

States. Another important source of flexibility not considered in this study is the potential 

provision of reserves from wind and utility-scale solar resources. As long as the utility can 

control these resources they can provide operating reserves, particularly in the down direction. 

Contributions to system flexibility from demand resources and renewables may very well be 

easier to implement than flexible nuclear operations as investigated in this analysis. In future 

work, we therefore recommend exploring these additional sources of system flexibility. 
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The balancing reserve rules for PV developed in this study did not account for forecasts of how 

clear it was expected to be. The reserves might be able to be lower during hours where it is 

expected that there will be little clouds. In particular, if probabilistic forecasts are available they 

could be used to ensure that there was low probability of clouds before reserves would be 

reduced. This would potentially decrease the balancing reserve requirements for PV and lower 

integration costs accordingly. Factoring weather forecasts into the dynamic estimation of 

balancing reserves represent an interesting direction for future work. Finally, the potential use of 

stochastic scheduling strategies that make direct use of probabilistic forecasts to commit and 

dispatch system resources is also an area of active research. In this case, the mathematical 

objective of the scheduling problem is to minimize operating cost over a range of forecast 

scenarios. Hence, balancing reserves are scheduled implicitly rather than imposed as explicit 

reserve requirements. Although several challenges, including a high computational burden, need 

to be addressed before stochastic methods can be used directly in utility operations, several 

studies show potential benefits in terms of reduced system cost and improved reliability 

(e.g., Wang et al. 2011; Zhou et al. 2013). However, most of the work on stochastic scheduling 

so far has been done in the context of wind power, and more work is needed to analyze the 

potential operational benefits for integration of solar power. 
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Appendix A Approach for Simulation of 1-min PV Data 
 

 

A.1 Need for Simulated PV Data 
 

A primary challenge in simulating the impact of PV on power system operations is generating 

high time-resolution PV production data that capture the geographic diversity of the expected 

deployment of solar PV. Hourly data with high geographic resolution is widely available from 

historical satellite images. Conversely, historical high time-resolution PV production data are 

available from individual existing PV sites. But neither of these datasets provide both a large 

geographic footprint and high time resolution. For this study, we use the historical hourly 

satellite-derived data for each PV site and then use simulation methods to generate realistic 1-

min data. In the future these methods for simulating 1-min PV data for planned PV plants may 

not be necessary if satellite data and ground measurements improve. Clean Power Research, for 

example, offers 1-km, 1-min resolution data through its SolarAnywhere High resolution product 

for California and Hawaii. Such a dataset may prove to be a preferred alternative to the methods 

outlined below if it were available where APS expects PV to be located. 

 

 

A.2 Objective 
 

The objective of the simulation approach is to generate 1-min PV production data with the 

following characteristics: 

 

 Geographic locations are based on where APS expects PV to be installed in future 

portfolios. 

 

 Data reflect historical hour-to-hour insolation patterns using satellite observations of 

clouds. 

 

 Sub-hourly variability at a particular site represents the expected variability based on the 

hourly average level of cloudiness. 

 

 Correlation of sub-hourly variability between sites is a function of the distance between 

individual sites.  

 

 

A.3 Data 
The data used to characterize sub-hourly solar insolation and the correlation of sub-hourly 

variability between sites were from the DOE ARM network in the Southern Great Plains region 

of the United States. This dataset was used in an earlier analysis of solar variability and is 

described in more detail in Mills and Wiser (2010). Hourly insolation from historical satellite-

derived data is from the National Solar Radiation Database (NSRDB). 
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A.4 Approach 
 

An approach to simulating high-resolution data for many sites that was developed and applied 

for wind energy (Veers 1988; Sørensen et al. 2007, 2008) is adapted in this study for PV 

simulation. In the case of wind, spectral analysis of wind speeds at an individual site was first 

used to characterize the magnitude of variability across different time scales. Coherence analysis 

between wind speeds at multiple sites was then used to characterize the degree to which 

variability is correlated between sites over each of those same time scales. Analysis of multiple 

sites at different distances was then used to characterize the relationship between coherence 

between sites and the distance between sites. This information and the geographic layout of 

individual sites that were simulated were then used with an advanced Monte Carlo approach to 

generate time series at each site whose frequency characteristics and coherence characteristics 

followed patterns similar to the original data. The simulation approach assumed variability 

within each frequency bin was normally distributed. 

 

 

Adaptations of the Approach for PV 
 

In order to adapt this approach for solar power, a few key characteristics of solar power must be 

taken into account: 

 

 Unlike wind, solar variability can be separated into a deterministic component because 

of the change of the position of the sun and a stochastic component due to transient 

phenomena like clouds. 

 

 The deterministic component of solar insolation is called the clear sky insolation and the 

ratio of the actual insolation to the clear sky insolation at any point of time is called the 

clear sky index. The clear sky index is equal to 1.0 when the actual insolation is equal to 

what it would be at that time on a clear day. 

 

 The clear sky index within an hour is not normally distributed; both the magnitude and 

shape of the clear sky distribution within an hour depend on the hourly clear sky index 

(Skartveit and Olseth 1992). 

 

The following simulation approach builds on the earlier work by Veers (1988) and Sørensen et 

al. (2007, 2008) by introducing intermediate steps that allow these unique characteristics of solar 

to be taken into account. The overall simulation approach is illustrated in Figure A-1. The 

method starts with hourly insolation for each site based on historical satellite data, determines 

how variable the insolation should be within that hour depending on the relative cloudiness, and 

then simulates a 1-min time series for each site while accounting for the correlation of 

fluctuations between sites. Further smoothing is applied to each site based on the size of the plant 

to account for any “within-plant” smoothing. 
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Figure A-1.  Simulation Approach to Generate a Time Series of Aggregate PV Production with 1-min 
Resolution 

 

 

A key step just prior to the time series simulator in Figure A-1 is using the hourly average clear 

sky index to look up the normalized power spectral density (PSD) as a function of the clear sky 

index. This PSD is based on analysis of 1-min solar insolation data from the DOE ARM 

Network. The PSD is used in the time series simulator to specify the relative magnitude of sub-

hourly fluctuations as a function of the frequency or time scale of the fluctuations. In order to 

account for the non-normal distribution of the clear sky index within an hour, the PSD is 

estimated for a normalized time series, described next. 

 

The normalization of the DOE ARM Network time series data can be best explained through a 

simple example. First, the probability that the 1-min clear sky index is less than a particular value 

is shown for different levels of the hourly average clear sky index ( ̅) in Figure A-2. Consider a 

site where the hourly clear sky index is 0.7, representing an hour that is partly cloudy. Analysis 

of hours in which the average clear sky index was 0.7 shows that the probability that the 1-min 

clear sky index at any point is less than 1.0 is roughly about 0.95; in other words, 95% of the 

time the 1-min clear sky index is less than 1.0 when the hourly average clear sky index is 0.7. 

The normalization of the 1-min clear sky time series is done by looking up the corresponding 

value in a standard normal distribution that would occur with that same probability. When the 

hourly average clear sky index is 0.7 and the 1-min clear sky index is 1.0, then the normalized 

time series has a value of 1.645 because 95% of the time a random number pulled from a 

standard normal distribution is less than 1.644. This same procedure is used for each 1-min value 

of the clear sky index time series depending on the average clear sky index for that hour.  
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Figure A-2.  Cumulative Probability Distribution Function of the 1-min Clear Sky Index for Different 

Hourly Average Clear Sky Index Values ( ̅) Derived from the DOE ARM Network 

 

 

Once the 1-min clear sky index time series has been normalized, the PSD is found for the 

normalized clear sky index using the Fast-Fourier Transform (FFT). The average PSD of the 

normalized time series for each hourly average clear sky index value ( ̅) is shown in Figure A-3. 

Since the temporal resolution of the normalized time series is 1 min, the shortest period 

fluctuations that can be resolved is 2 min. 

 
 

 

Figure A-3.  Power Spectral Density of Normalized Sub-hourly Variability for Different Values of the 

Hourly Average Clear Sky Index ( ̅) 

 

 

The time series simulator uses the normalized PSD for each site depending on the hourly average 

clear sky index and information about the geographic distribution of the sites in the creation of 

the time series. Geographic distribution is accounted for through two parameters: the distance 

between any pair of sites and coherence of sub-hourly variability as a function of distance. 

Coherence is a frequency-domain analogue to correlation. Coherence includes information on the 

correlation of fluctuations for each frequency or time scale. For example, for two sites that are 

some distance apart, the correlation between longer fluctuations is expected to be greater than the 
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correlation between shorter, transient fluctuations. The time series simulator converts 

information about the magnitude of fluctuations from the frequency domain to the time domain 

and uses the coherence information to choose the phase of those fluctuations. 

 

To determine this relationship, the coherence of the normalized time series was found for each 

pair of sites in the DOE ARM Network dataset. The coherence as a function of distance was then 

fit to the function in Equation 1 to determine the parameters b, a1, and a2. This relationship was 

then used to define the coherence as a function of distance between pairs of sites in the time-

series simulator. For the best fit, the parameter b = 0.9011, a1 = 84.64, and a2 = 0.334. The 

relationship using the best-fit parameters from the DOE ARM Network data is shown in  

 

 

               (            )  (   )    (            ) Eq. 1 

 

 

 

Figure A-4.  Coherence of Normalized Clear sky Index as a Function of Distance between Sites Based 
on a Best Fit to Equation 1 

 

 

The time series simulator uses the PSD at each site and the coherence between sites to create an 

hour-long time series of the normalized time series with a temporal resolution of 1 min. Because 

the PSD and the coherence parameters have been normalized, the core time series simulator (the 

large rectangular box in Figure A-1) can now be largely based on the method used by Veers 

(1988) and Sørensen et al. (2007, 2008). 

 

The hourly average clear sky index at each site is then used to redistribute the normalized time 

series to represent the 1-min clear sky index using the distributions in Figure A-2. Using the 

earlier example, if the normalized time series has a value of 1.645 for one particular minute when 

the hourly average clear sky index for the hour was 0.7, then the 1-min clear sky index is 1.0. 

 

After the time-series simulator is run for 1 hr, new hourly clear sky index data for each site are 

entered to generate the next 60-min time series of the clear sky index for each site. This process 

is continued for an entire year with each hour of 1-min simulated data being joined to the 

previous hour of 1-min simulated data. The year of 1-min clear sky index data for each site is 
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then multiplied by a year of 1-min clear sky PV production data to estimate the 1-min PV 

production data for a point at each site over 1 year. 

The final adjustment that needs to be made before aggregating the PV production time series for 

each site is to account for any within PV plant smoothing. The fluctuations generated by the 

time-series simulator reflect changes in insolation that would occur at a point. A PV plant, even a 

small PV plant, generally leads to smoother production than would be expected by just looking at 

the insolation at a point. To account for this within-plant smoothing, a first-order linear filter is 

applied to the time series with the smoothing parameter based on the PV plant size. The 

relationship between plant smoothing and the smoothing filter is based on empirical analysis of 

within-plant smoothing for several different sized PV plants in Spain (Marcos et al. 2011b).
23

 In

addition, it is assumed that distributed PV is spread out over a large area. In the case of 

distributed PV, it is assumed that the effective plant area is the size of the resolution of the 

historical satellite data, an area of about 11km by 11km. 

The correlated 1-min time series for each PV site is then aggregated to determine the total PV 

production. The 1-min PV production for each site modeled for this study and the resulting 

aggregate PV production are shown for two consecutive days in Figure A-5.  

The first day is relatively clear, leading to only a few dips in PV production at sites within the 

day. The second day is partly cloudy at most of the sites, which leads to large changes in output 

at many of the individual sites. The aggregate PV production on the partly cloudy day is lower 

on average than on the clear day. The aggregation mitigates the variability, although the partly 

cloudy day is still more variable than the clear day.  

23
 An alternative method to a first-order linear filter approach for capturing the within-plant smoothing is a wavelet-

based variability model proposed by Lave et all (2013). We did not attempt to implement this alternative 

approach, but leave it as a suggestion for future research. 
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Figure A-5.  Simulated PV Production Data at Each Individual Site and Aggregated for a Clear 
and Cloudy Day in April  

 

 

A.5 Future Improvements to Methodology 
 

Two issues deserve attention in future iterations of this time-series simulation tool: anomalies 

introduced by estimation of the hourly average clear sky index and hour-to-hour seams issues. 

 

First, the data from the historical satellite images did not always line up well with the clear sky 

insolation data estimated with the Bird Clear Sky Model
24

 (Bird and Hulstrom 1981). In some 

hours near sunrise and sunset the estimated hourly average clear sky index was well outside of its 

normal expected range. In those cases the average hourly clear sky index for the anomalous 

hours was replaced with the daily average clear sky index. It appeared that this mismatch could 

occur at many of the sites simultaneously. As a result, examination of the simulated 1-min data 

showed that some days, particularly cloudy days, could show a rise in aggregate PV production 

with rising of the sun followed by a relatively strong decrease in the following hours. Such 

behavior is actually apparent in the cloudy day in Figure A-5. It is not always clear whether this 

behavior during sunset and sunrise hours is realistic or an artifact of the modeling approach. 

                                                 
24

 Available in Excel format at http://rredc.nrel.gov/solar/models/clearsky/. 
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Second, the time series simulator generates 60-min time series for each hour and then stitches 

these time series together. This approach appears reasonable when joining two hours with similar 

hourly average clear sky index values. In some cases, however, the hour-to-hour change in the 

hourly average clear sky index is large. The process of stitching together the two 60-min time 

series can therefore lead to a large change in PV production at the top of the hour (Figure A-6). 

This limitation of the simulation method tends to overstate the magnitude of ramps at the top of 

the hour. Overall, ramp rate validation of the simulated 1-min PV data compared to actual 1-min 

PV data is desirable and should be a priority for future work. 

 

 

 

Figure A-6.  Evaluation of Large Ramps in Aggregate PV Production Depending on the Clock 
Minute of the Hour 

 

 

Finally, additional improvements to this approach could include accounting for wind speed at the 

cloud height to adjust the within-plant smoothing parameter (e.g., Lave and Kleissl 2013), 

determining if wind direction should be used to predict coherence between two PV sites 

(e.g., Hinkelman 2013), improving the variability characterization and coherence function to 

reflect cloud speeds in the Southwest, tuning the clear sky insolation model, and validation of 

synthesized data using actual correlated PV plant data at multiple sites. 
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Appendix B Balancing Reserve Calculations and 
Simulation of CPS2 Score 

 

 

B.1 Overview 
 

We determine the amount of balancing reserves (BR) that need to be set aside during the HA 

scheduling process in each hour to ensure that the balancing authority (BA) can meet NERC 

reliability requirements. The particular standard we focus on in this analysis is the NERC 

balancing standard called Control Performance Standard 2 (CPS2). The BR rules are established 

based on observations of large minute-by-minute deviations from the HA schedule. We then 

verify that those rules are sufficient to meet a desired target CPS2 level. If the reserves are 

insufficient, the BR rules are revised to ensure compliance (Figure B-1). 

 

 

 

Figure B-1.  Process Used to Establish and Validate Balancing Reserve Rules 

 

 

The HA schedule is a flat hourly schedule with ramps between hours that is determined based on 

HA forecasts. Deviations from the HA schedule are based on the difference between the actual  

1-min production and HA schedule in each minute. Within each operating hour, BR are deployed 

to meet deviations. 

 

The area control error (ACE) is a measure of the degree to which deviations from the HA 

schedule are matched by deployment of BR within the operating hour. The ACE can be non-zero 

if deviations exceed the amount of BR available at that time or if the ramp rate of deviations 

exceeds the rate at which that the BR can be deployed. A small amount of ACE, within a utility-

specific parameter called L10, is allowable in the NERC CPS2 standard. The deployment of BR 

is therefore simulated to follow a filtered signal of the deviations from the HA schedule. Small, 
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rapid deviations are allowed to pass through to the ACE without the operator having to respond 

with deployments of BR. 

 

The CPS2 score is based on a comparison of the 10-min average ACE to the utility-specific L10 

parameter. If the 10-min average of the ACE exceeds L10, then a violation occurs in that 10-min 

period. The CPS2 score is the number of periods without a violation as a percentage of the total 

number of potential periods. The minimum CSP2 score for compliance with NERC balancing 

standards requires that CSP2 be greater than 90%. In other words, the average ACE must be less 

than L10 in more than 90% of the 10-min periods. 

 

Because holding resources in reserve during the HA scheduling imposes a cost, the BR rules 

should be kept to the minimum needed to maintain a reasonable CPS2 score. In the extreme, a 

BA can always maintain an ACE of zero by keeping a very large amount of large BR that could 

ramp extremely quickly and then deploying those BR to manage every deviation from the HA 

schedule. The BA would then achieve the highest possible CPS2 score of 100%. In the other 

extreme, if the BR were to be zero, then every deviation from the HA schedule would result in an 

ACE. In periods in which the 10-min average ACE was large enough to exceed L10, the BA 

would have violations. Because some periods would likely have a small ACE but many more 

would have an ACE exceeding L10, the CPS2 score would likely be greater than 0%, but far 

lower than the minimum 90%. 

 

This analysis is used to identify reasonable BR rules that maintain a CPS2 score above the 

minimum of 90%, without trying to always achieve a perfect 100% CPS2 score. We examine 

how the BR rules need to change with the addition of variability and uncertainty from PV, in 

addition to the variability and uncertainty of the load and wind. 

 

The remainder of this appendix outlines the assumptions and methods used to estimate these BR 

rules and the resulting CSP2 score. At the end we briefly consider the implications of imbalances 

on the NERC CPS1 score and compare the analysis method used here to other previous work on 

balancing reserves for variable generation. 

 

 

B.2 HA Forecasts 
 

HA forecasts are used to set the level of the HA schedule. The method used to generate HA 

forecasts differs by technology (Table B-1). 
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Table B-1.  HA Forecast Methods for Different Resources 

 
Resource HA Forecast Method 

Wind The 1-min wind production value 30 min prior to the start of the operating hour (Figure B-2). 

PV The 1-min clear sky index 30 min prior to the start of the operating hour times the average clear 
sky production during the operating hour  

Load Historical HA load forecast errors at APS observed in 2010 are assumed to occur for the same day 
and hour of the modeled year. 

Net load The net-load forecast in each hour is the load forecast minus the wind and PV forecasts. 

 

 

 

Figure B-2.  Illustration of Method Used to Create Wind Power Forecasts  

 

 

B.3 HA Schedule 
 

The flat hourly forecast is converted into a minute-by-minute HA schedule by adding ramps at 

the start (ramping from the previous HA schedule) and end (ramping to the next HA schedule) of 

the hour (Figure B-3). The ramps start at 10-min prior to the operating hour and end 10-min after 

the start of the operating hour. 

 

 

 

Figure B-3.  Illustration of Conversion of Flat Hourly Forecast into HA Schedule with Ramps 
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B.4 Deviations 
 

The 1-min deviations from the HA schedule are calculated by subtracting the actual 1-min output 

from the minute-by-minute HA schedule (Figure B-4). These deviations are the primary driver 

for the deployment of BR. 

 

 

 

Figure B-4.  Illustration of 1-min Deviations from the HA Schedule 

 

 

B.5 Balancing Reserves Rules 
 

The amount of BR available in each hour is based on empirical analysis of the 1-min deviations 

from the HA schedule, contingent on various factors (described for each load, wind, and PV in 

the following sections). BR levels are set independently for balancing up and balancing down 

(Figure B-5). The BR rules are set for wind, PV, and load and then combined, as described 

below, to create the BR rule for the net load. 

 

 

 

Figure B-5.  Illustration of Balancing Reserves Rules Derived from Analysis of 1-min Deviations 
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B.5.1 BR Rules for Wind  
 

The 1-min deviations of the aggregate wind from the HA wind schedule are separated into 

20 equal-sized bins depending on the scheduled wind between 0 MW and the maximum wind 

output. The 2.5th percentile deviation is then used to set the balancing-down reserve rule for that 

bucket of HA wind forecast. The 97.5th percentile deviation is used to set the balancing-up 

reserve rule for that bucket of HA forecast wind. The BR rules are then applied to wind based on 

the HA wind schedule for a particular hour. 

 

The BR rules for wind in the low-PV case using this approach are shown in Figure B-6. The BR 

rule is conditioned on the HA wind schedule as a fraction of the maximum observed wind output 

(627 MW). The BR rule in the up direction is greatest when the HA wind schedule is about 40% 

of its peak wind output. The BR rule in the down direction is greatest when the HA schedule for 

wind is about 70% of its peak output. The BR rule is low both when the HA schedule for wind is 

close to zero and close to the peak wind production. 

 

 

 

Figure B-6.  BR Rules for Wind Conditioned on HA Wind Schedule 

 

 

A validation pass is used to ensure that the hourly BR rule for wind always represents feasible 

actual wind output levels. Therefore, the BR requirements are further revised to meet the 

following criteria: 

 

 BR
+
 + HA wind schedule   maximum observed 1-min wind over the year 

 BR
-
 + HA schedule   0 MW 

 

 

B.5.2 BR Rules for PV 
 

Similar to the case for wind, the 1-min deviations of aggregate PV from the HA schedule are 

separated into 20 equal-sized bins. The different bins for PV, however, depend on the hourly 

clear sky production level, and the bins start at 0 MW and increase to the highest clear sky 

production level. The 2.5th percentile deviation is then used to set the BR down for that bucket 
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of clear sky production. The 97.5th percentile is used to set the BR up requirement for that 

bucket of clear sky production. The BR rules are then applied to PV in each hour based on that 

hour’s average clear sky production. 

 

The BR rule for PV based on the low-PV case is shown in Figure B-7. The amount of BR in the 

up direction is greatest when the clear sky production is near the annual maximum clear sky 

production (1,600 MW). The requirement is lower when the clear sky production is near zero. 

 

 

 

Figure B-7.  BR rule for PV Conditioned on the Clear Sky 
Production  

 

 

To ensure feasibility, the following adjustments to the BR rules are made for PV in a validation 

pass: 

 

 BR
+
 + HA schedule   maximum hourly clear sky index × hourly clear sky level  

 BR
-
 + HA schedule   0 MW 

 

 

B.5.3 BR Rules for Load 
 

The BR rule is based on the 1-min deviations that occur in each hour of the day (e.g., the 

deviations that occur between 4:00 a.m. and 4:59 a.m. over the entire year). The 2.5th percentile 

deviation is then used to set the BR down for that hour of the day. The 97.5th percentile 

deviation is used to set the BR up requirement for that hour of the day. 

 

The resulting BR rules for the load are shown for each hour of the day in Figure B-8. The BR 

rule for the load is at most about 115 MW up and 95 MW down and does not vary significantly 

depending on the hour of the day. 

 

 



Integrating Solar PV into Utility System Operations 

87 

 

Figure B-8.  BR rules for the Load Conditioned on the 
Hour of the Day 

 

 

B.5.4 BR Rules for Net Load 
 

The BR rule for each hour for the net load is simply calculated as the root mean square of the BR 

rule for the load, PV, and wind in that hour. Because of sign differences, the balancing reserve 

up for load is combined with the balancing reserve down for PV and wind. The rationale behind 

this approach is the assumption of uncorrelated deviations in the load, wind, and PV. This 

assumption is shown to be valid based on the CPS2 score being about the same for the load, 

wind, PV, and net load when the BR rules for the net load are calculated using this approach. 

 

The BR rules for each hour of the year are shown for the load, wind, PV, and net load based on 

the 2005 weather year in Figure B-9. The values are shown as a reserve level duration curve and 

are not chronological (i.e., they are sorted from highest to lowest values). A few points are 

apparent from this figure: 

 

 The BR rule changes little throughout the year for the load. 

 

 The BR rule for wind is less stable than load and can be larger in magnitude than the 

reserves for load.  

 The BR rule for PV is near zero for half the year, but it then changes dramatically 

depending on conditions for the other half of the year. 

 

 The net load BR rule also changes significantly throughout the year. Net load BR in the 

down direction (negative values below) are similar in magnitude to the net load BR in the 

up direction (positive values). 
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Figure B-9.  Balancing Reserves Rules over the Full Year for 2005 for the Load, Wind, PV, and Net 
Load 

 

 

B.6 Balancing Reserve Deployment 
 

The 1-min deviations between the HA schedule and the actual production are used to simulate 

the deployment of balancing reserves. The BR can be deployed up to the limits imposed by each 

hour’s BR rule. In addition, balancing reserves are assumed to be able to be fully deployed 

within 10 min, and this sets a maximum ramp rate for the deployment of the balancing reserves. 

For example, if the BR rule for a particular hour results in 100 MW of balancing reserves being 

available, then the maximum deployment rate is assumed to be 10 MW/min (or 100 MW in 

10 min assuming the BR can be fully deployed in 10 min). Further, if the hourly BR rule were to 

be increased to 150 MW, then the maximum deployment rate would increase to 15 MW/min. 

This establishes a relationship between the capacity of BR and the maximum ramp rate for 

deployment of BR. No additional reserves are deployed once the deviations exceed the limit of 

the BR rule or the maximum ramp rate (Figure B-10). Any excess deviation results in ACE. This 

simulation is somewhat conservative because some resources used for BR may actually be able 

to be deployed faster than 10 min. This simulation does not capture these faster resources 

because it assumes a single ramp rate for all generation used to provide balancing reserves. A 

simulation that captures unit-by-unit contributions to deployment of balancing reserves would 

better reflect the capabilities of faster units. 

 

During the initial testing, we found that the BR deployments were often “chasing” small 1-min 

deviations that if ignored would lead to only small ACEs, often less than the L10 limit for the 

utility. The deviations were therefore filtered by using an exponentially weighted moving 

average filter (using only past deviations in each time step). The time constant was set to 5 min 
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for the filter. Deviations that are filtered out are not met with BR deployment and therefore also 

contribute to the ACE. Because these deviations are often very small, this filtering has a minimal 

impact on the CPS2 score. 

 

 

 

Figure B-10.  Illustration of Reserves Deployment Based on Deviations and Limited by BR Rules 

 

 

B.7 Area Control Error (ACE) 
 

For each minute, the ACE is calculated as the difference between the 1-min deviation from the 

HA schedule and the minute-to-minute BR deployment (Figure B-11).
25

 

 

 

 

Figure B-11.  Illustration of ACE Based on Deviations Not Met by Deployment of BR 
 

 

                                                 
25

 The ACE can be calculated by assuming deviations and balancing reserve deployment are based only on a single 

resource (e.g., wind alone or load alone). Or it can be calculated based on all resources combined (i.e., the net 

load). 
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B.8 CPS2 Score 
 

The CPS2 score is calculated based on the utility-specific L10 value provided by NERC and the 

10-min average of the ACE. The CPS2 score is the percentage of 10-min periods in which the 

10-min average ACE does not exceed L10 (Figure B-12). This score must be greater than 90% for 

NERC compliance.
26

 

 

Good performance of the BR rules is such that the CPS2 score for the load is greater than 90% 

and the CPS2 score for the load and net load are about equal. Typical CPS2 scores for a number 

of BAs in WECC averaged between 96% and 98% between 2002 and 2009.
27

 
 

 

 

Figure B-12.  CPS2 Violations Occur Only When 10-min Average of ACE Exceeds L10 (shown by width of 
green line) 

 

 

B.9 Revision of BR Rules 
 

If it appears that the initial BR rules do not lead to an adequate CPS2 score, then the percentiles 

of deviations used to set the BR rules can be increased and tested again (Figure B-13). 

Alternatively, if the CPS2 score is very close to 100%, then the percentiles can be decreased. 

This process can be repeated until the desired CPS2 score is met. 

 

 

                                                 
26

 Because the ACE can be calculated for load, wind, and PV alone or for the net load, the CPS2 score can be found 

for each of these resources too.  
27

 http://www.wecc.biz/OC%20Informational%20Webinar02042013/Lists/Presentations/ 

1/RBC%20Field%20Trial%20Presentation%20-%20Anitha%20Neve.pdf. 
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Figure B-13.  BR Rules can be Revised to Reduce ACE, Reduce Violations, and Ensure Compliance with 
NERC Balancing Standards 

 

 

B.10 Intermediate Results  
Several assumptions were used to estimate the BR rules and CPS2 performance using the load, 

wind, and PV data for the low-PV case (Table B-2). 

 

 
Table B-2.  Assumptions Used to Estimate BR Rules in the Low-PV Case and Evaluate Their Performance 

 
Assumptions Value 

BR amp rate Fully deployable in 10 min 

 

Percentile of 1-min deviations used for BR 2.5th percentile for downward rule; 97.5th percentile for upward 
rule 

 

Schedule ramps 10 min prior to operating hour and 10 min before the end of the 
operating hour 

 

Schedule lead time for persistence forecast 30 min prior to the start of the operating hour 

 

APS L10 value 48 MW 

 

Data year  2004 for deviations to calculate BR rules and 2005 to estimate 
CP2 performance using those BR rules 
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B.10.1 Load 
 

By using the assumptions in Table B-2, the HA schedule (black line), the rules for upward 

balancing (green line) and downward balancing (grey line) in each hour, and the 1-min actual 

load data (red line) are shown over a full day starting at midnight on April 28, 2005 in the top 

left of Figure B-14. The deviations from the HA schedule, the deployment of the BR and the 

resulting ACE for the same time period are all shown in the bottom left of Figure B-14. The 

deviations from the HA schedule that are met with deployment of BR are shown as the tan area, 

while deviations that are not met from deployment of BR (and therefore result in ACE) are 

shown as the red area. The ACE (red line) and L10 for APS (blue area) are shown in the top left. 

Finally, a cumulative distribution function of the ACE over the entire year is shown in the 

bottom right. The resulting CPS2 score for the load only is 93.8%, somewhat lower than the 

historical CPS2 score of 97.3% reported by APS for the month of March 2007. 

 

 
Schedules 

 

Resulting ACE (L10 in blue) 

 
Deviations from the Schedule 

 

Cumulative ACE over the Full Year 

 

Figure B-14.  Schedules, Deviations from the Schedule, and ACE for an April Day in 2005 along with the 
Annual ACE, All Based on the Load 
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B.10.2 Wind 
 

The exact same calculations were conducted by using the wind data from 2005 (Figure B-15). 

The resulting CSP2 score for the wind only would be higher at 99.1%. 

 

 
Schedules

 
 

Resulting ACE (L10 in blue):

 

Deviations from the Schedule

 

Cumulative ACE over the Full Year 

 

Figure B-15.  Schedules, Deviations from the Schedules, and ACE for the Same April 2005 Day along with the 
Annual ACE, All Based on the Wind 

 

 

B.10.3 PV 
 

The same calculations were conducted by using the PV data from 2005 (Figure B-16). The 

resulting CSP2 score for the PV only would also be higher than the CPS2 score for the load 

alone at 96.3%. 
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Schedules 

 
 

Resulting ACE (L10 in blue) 

 

Deviations from the Schedule

  

Cumulative ACE over the Full Year 

 
 

Figure B-16.  Schedules, Deviations from the Schedules, and ACE for the Same April 2005 Day along with the ACE, 
All Based on the PV 

 

 

B.10.4 Net Load 
 

The net load was then calculated from the 1-min load data less the 1-min wind and PV data 

(Figure B-17). The resulting CSP2 score for the net load was at 95.8%, slightly higher than the 

CPS2 score for the load alone. This indicates that as long as the balancing reserves are increased 

when wind and solar are added to the system, then the degree to which the system is kept in 

balance can remain equivalent to or better than the situation for the load alone. 
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Schedules 

 

Resulting ACE (L10 in blue) 

 
Deviations from the Schedule 

 
 

Cumulative ACE over the Full Year 

 

Figure B-17.  Schedules, Deviations from the Schedules, and ACE for the same April 2005 Day along with the ACE, 
All Based on the Net Load 

 

 

B.11 Sensitivity Analysis 
 

Several sensitivity cases were run to determine the degree to which assumptions used in the low-

PV case affected the BR rules and the resulting CPS2 score. In addition, these sensitivity cases 

were used to identify steps that the utility could take to mitigate the impact of PV on the need for 

BR reserves and the costs associated with holding resources in reserve during the HA 

scheduling. These sensitivities are explored by estimating the CPS2 score, the average BR up 

requirement over the year, and the largest BR up and down requirements over the year. These 

statistics were calculated for the load, load-wind, and the net load defined as load-wind-PV. 

 

One additional calculation in this section is an estimate of the portion of the BR that would need 

to come from spinning resources. Based on the assumption that non-spinning resources could be 

started and online within 10 min, then spinning reserves would be needed to meet all the 

balancing reserves requirements for the first 10 min. Based on the deployment of BR up, we 

examine the largest amount of BR up needed in 10 min, say, for example, the largest BR 

deployment in 10 min was 150 MW. We then set a requirement that any BR of 150 MW or less 

needs to come from spinning resources. Anything greater than 150 MW is therefore assumed to 
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be able to be met by non-spinning resources that take 10 min to fully come online. This statistic, 

showing the largest deployment of BR in 10 min, is called the “minimum BR up from spinning 

resources” and is shown in the following tables. For the most part the majority of the BR 

requirements must be met by spinning resources, though we explore some scenarios in which 

this is not the case. 

 

 

B.11.1 Comparison of 2005 Results to 2004 
 

The method employed here for estimating the BR requirements uses the deviations from data 

based on the 2004 dataset to calculate BR rules for the 2005 dataset (Table B-3). We chose this 

approach because, in practice, it is not possible to know these deviations ahead of time. To 

examine the impact of using deviations from a previous year to establish balancing rules, we 

used 2004 data to generate BR rules for 2004. We then evaluated the performance of the BR 

rules with the actual 1-min data from 2004 to demonstrate that there is no significant gain in 

performance for the BR rules derived using 2004 data and applied to 2004 versus applying the 

same 2004 BR rules to 2005. 

 

 
Table B-3.  BR Sensitivity Results: 2005 vs. 2004 

Metric Year Load Load-Wind 

 
Net Load 

(Load-Wind-PV) 

CPS2 2004 
2005 

 

95.5% 
93.8% 

96.8% 
96.1% 

96.1% 
95.8% 

Average BR up 2004 
2005 

 

96 MW 
96 MW 

130 MW 
132 MW 

170 MW 
171 MW 

Maximum BR up 2004 
2005 

 

116 MW 
116 MW 

187 MW 
187 MW 

275 MW 
278 MW 

Minimum BR up from spinning 
resources 

2004 
2005 

 

102 MW 
103 MW 

174 MW 
173 MW 

250 MW 
264 MW 

Maximum BR down 2004 
2005 

−97 MW 
−97 MW 

−159 MW 
−159 MW 

−294 MW 
−294 MW 

 

 

B.11.2 Sensitivity to Choice of Percentiles 
 

In order to examine the sensitivity of the BR rules and the resulting CPS2 score to the choice of 

percentiles of 1-min deviations, the percentiles were varied from the choice of the 2.5th and 

97.5th percentile for load, wind, and PV used in the reference case to higher and lower values 

(Table B-4). 

 

The CPS2 score is clearly linked to the choice of percentiles. Another interesting finding is that 

the minimum amount of reserves that should come from spinning resources increases only 

slightly with higher percentiles of deviations (by 22 MW for the net load), but the maximum 
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total BR in the up direction increases by 90 MW for the net load. This indicates that if the utility 

desires a CPS2 score greater than 96%, then the utility can primarily use non-spinning resources 

to meet “tail” events that are outside of the lower percentile range (from the 2.5th to the 97.5th). 

 

 
Table B-4.  BR Sensitivity Results: Choice of Percentiles 

Metric 

 
Percentile of  

1-min Deviations Load Load-Wind Net Load 

CPS2 5th to 95th  
2.5th to 97.5th  

1st to 99th  
 

90.0% 
93.8% 

96.5% 

92.49% 
96.1% 

98.6% 

92.2% 
95.8% 

98.2% 

Average BR up 5th to 95th  
2.5th to 97.5th  

1st to 99th  
 

78 MW 
96 MW 

122 MW 

106 MW 
132 MW 

168 MW 

136 MW 
171 MW 

224 MW 

Maximum BR up 5th to 95th  
2.5th to 97.5th  

1st to 99th  
 

89 MW 
116 MW 

156 MW 

143 MW 
187 MW 

253 MW 

240 MW 
278 MW 

368 MW 

Minimum BR up from spinning 
resources 

5th to 95th  
2.5th to 97.5th  

1st to 99th  
 

87 MW 
103 MW 

132 MW 

137 MW 
173 MW 

233 MW 

225 MW 
264 MW 

286 MW 

Maximum BR down 5th to 95th  
2.5th to 97.5th  

1st to 99th 

−77 MW 
−97 MW 

−116 MW 

−124 MW 
−159 MW 

−206 MW 

−205 MW 
−294 MW 

−364 MW 

 

 

B.11.3 Sensitivity to Choice of Smoothing Filter for Deployment of ACE 
 

Adding a smoothing filter to the deviations allows the balancing reserves deployment to avoid 

chasing small deviations that result in ACE that is lower than the utility L10 value. These ACEs 

are small enough that they do not affect the CPS2 score. Filtering them out reduces unnecessary 

wear and tear on generators that are providing balancing reserves. The base choice of a 

smoothing filter has a time constant of 5 min. A sensitivity case with no filtering (time constant 

of 0 min) shows that there is only a small improvement (an increase of 0.1%) in the CPS2 score. 

On the other hand, increasing the time constant to 10 min (and therefore filtering out larger 

deviations) slightly reduces the CPS2 score for both the load and net load. Either way, the results 

are not found to be sensitive to the particular choice of filtering that was applied in the reference 

case (a time constant of 5 min), as shown in Table B-5. 
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Table B-5.  BR Sensitivity Results: ACE Smoothing Filter 

Metric 

 
Time Constant 

of Deviation 
Filter Load Load-Wind Net Load 

CPS2 0 min 
5 min 

10 min 
 

93.9% 
93.8% 

93.6% 

96.2% 
96.1% 

95.9% 

96.0% 
95.8% 

95.6% 

Average BR up 0 min 
5 min 

10 min 
 

96 MW 
96 MW 

96 MW 

132 MW 
132 MW 

132 MW 

171 MW 
171 MW 

171 MW 

Maximum BR up 0 min 
5 min 

10 min 
 

116 MW 
116 MW 

116 MW 

187 MW 
187 MW 

187 MW 

278 MW 
278 MW 

278 MW 

Minimum BR up from spinning 
resources 

0 min 
5 min 

10 min 
 

110 MW 
103 MW 

101 MW 

176 MW 
173 MW 

174 MW 

267 MW 
264 MW 

263 MW 

Maximum BR down 0 min 
5 min 

10 min 

−97 MW 
−97 MW 

−97 MW 

−159 MW 
 159 MW 

−159 MW 

−294MW 
−294 MW 

−294 MW 

 

 

B.11.4 Sensitivity to Choice of BR Ramp Rate 
 

The base assumption was that the balancing reserves could be fully deployable in 10 min (10% 

of BR capacity per minute). Here we test BR with a faster ramp rate that can fully deploy in 

5 min (20% of BR capacity per minute) and a slower ramp rate that can fully deploy in 20 min 

(5% of BR capacity per minute) (Table B-6). Balancing reserves that can be fully deployed at a 

much faster rate has a slight beneficial impact on the CPS2 score relative to the base case. 

Having much slower reserves, on the other hand, greatly degrades the CPS2 score, indicating 

that many deviations from the schedule occur very quickly and that slow reserves would not be 

able to keep up with many large changes. Interestingly, the impact of slow reserves is slightly 

worse for the load than the net load, indicating that the wind and PV tend to have slightly slower 

ramping deviations than the load. 
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Table B-6.  BR Sensitivity Results: BR Ramp Rates 

Metric 

 
BR Ramp Rate (fully 

deployable in…) Load Load-Wind Net Load 

CPS2 5 min 
10 min 

20 min 
 

97.1% 
93.8% 

84.6% 

97.8% 
96.1% 

88.3% 

97.4% 
95.8% 

87.9% 

Average BR up 5 min 
10 min 

20 min 
 

96 MW 
96 MW 

96 MW 

132 MW 
132 MW 

132 MW 

171 MW 
171 MW 

171 MW 

Maximum BR up 5 min 
10 min 

20 min 
 

116 MW 
116 MW 

116 MW 

187 MW 
187 MW 

187 MW 

278 MW 
278 MW 

278 MW 

Minimum BR up from spinning 
resources 

5 min 
10 min 

20 min 
 

103 MW 
103 MW 

102 MW 

177 MW 
173 MW 

173 MW 

256 MW 
264 MW 

259 MW 

Maximum BR down 5 min 
10 min 

20 min 

−97 MW 
−97 MW 

−97 MW 

−159 MW 
−159 MW 

−159 MW 

−294 MW 
−294 MW 

−294 MW 

 

 

B.11.5 Sensitivity to Choice of Schedule Lead Time for Persistence Forecast  
 

We assumed that HA schedules needed to be decided based on information available 30 min 

prior to the start of the operating hour (as illustrated in Figure B-2). With increased automation 

and use of information technology, it may be possible to shorten the lead time prior to the 

operating hour for setting schedules. To examine this, we test a 15-min lead time for creating 

persistence forecasts. We also test a 45-min lead time for utilities that may need more time to set 

schedules (Table B-7). 

 

The results indicate that with a shorter lead time the BR rules (both average and maximum) can 

be slightly reduced while the CPS2 score can be maintained. With a longer lead time, the 

balancing reserves need to be increased in order to manage the larger forecast error while 

maintaining the same CPS2 score. 
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Table B-7.  BR Sensitivity Results: Forecast Lead Time 

Metric 

 
Lead time for 

schedules Load Load – Wind Net Load 

CPS2 15 min 
30 min 

45 min 
 

93.8% 
93.8% 

93.8% 

95.6% 
96.1% 

96.6% 

95.3% 
95.8% 

96.1% 

Average BR up 15 min 
30 min 

45 min 
 

96 MW 
96 MW 

96MW 

122 MW 
132 MW 

140 MW 

161 MW 
171 MW 

181 MW 

Maximum BR up 15 min 
30 min 

45 min 
 

116 MW 
116 MW 

116 MW 

163 MW 
187 MW 

206 MW 

268 MW 
278 MW 

296 MW 

Minimum BR up from spinning 
resources 

15 min 
30 min 

45 min 
 

103 MW 
103 MW 

103 MW 

149 MW 
173 MW 

192 MW 

239 MW 
264 MW 

276 MW 

Maximum BR down 15 min 
30 min 

45 min 

−97 MW 
−97 MW 

−97 MW 

−142 MW 
−159 MW 

−172 MW 

−312 MW 
−294 MW 

−309 MW 

 

 

B.11.6 Sensitivity to the Choice of Inter-Hour Ramp Start and End Time 
 

The ramps between operating hours are established by the business practices within the WECC. 

The duration of the ramps, however, affect the degree to which the hourly schedule deviates 

from the actual load or net load. Ramps that start and end closer to the operating hour require 

rapid ramping between hours and leave much of the hour with a flat schedule (as illustrated 

earlier in Figure B-3). On the other hand, longer ramps between hours provide a gentler slope 

from hour to hour and less of the hourly schedule is flat. 

 

The shorter ramp times (5 min instead of 10 min) lead to a lower CPS2 score and larger BR 

requirements (Table B-8). Extending the ramp times (from 10 to 20-min), on the other hand, 

increases the CPS2 score and reduces the BR requirements. 

 

We also tested a case with a 30-min hour-to-hour ramp start and end time, which leaves no flat 

part of the hourly schedule. In this case we also move the lead time for creating these schedules 

to 50 min prior to the start of the operating hour. This leaves a lead time of 20 min prior to the 

start of the 30-min ramp, which is similar to the lead time before the start of the ramp with 

10-min ramps and schedules submitted 30-min prior to the start of the operating hour. The longer 

lead time increases the forecast error, but the smoother schedules lead to an overall reduction in 

the BR requirements and increase in CPS2 relative to the base case. 
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Table B-8.  BR Sensitivity Results: Inter-Hour Ramps 

Metric 

 
Hour-to-Hour 

Ramp Start and 
End Time 

Lead Time 
for 

Schedules Load Load-Wind Net Load 

CPS2 5 min 
10 min 

20 min 
30 min 

 

30 min 
30 min 

30 min 
50 min 

88.3% 
93.8% 

98.0% 
98.6% 

91.1% 
96.1% 

98.5% 
98.7% 

91.4% 
95.8% 

97.8% 
98.1% 

Average BR up 5 min 
10 min 

20 min 
30 min 

 

30 min 
30 min 

30 min 
50 min 

109 MW 
96 MW 

76MW 
66 MW 

143 MW 
132 MW 

115 MW 
119 MW 

182 MW 
171 MW 

151 MW 
157 MW 

Maximum BR up 5 min 
10 min 

20 min 
30 min 

 

30 min 
30 min 

30 min 
50 min 

134 MW 
116 MW 

87 MW 
71 MW 

202 MW 
187 MW 

159 MW 
168 MW 

305 MW 
278 MW 

243 MW 
249 MW 

Minimum BR up from 
spinning resources 

5 min 
10 min 

20 min 
30 min 

 

30 min 
30 min 

30 min 
50 min 

132 MW 
103 MW 

80 MW 
67 MW 

186 MW 
173 MW 

137 MW 
139 MW 

295 MW 
264 MW 

225 MW 
205 MW 

Maximum BR down 5 min 
10 min 

20 min 
30 min 

30 min 
30 min 

30 min 
50 min 

−122 MW 
−97 MW 

−72 MW 
−59 MW 

−178 MW 
−159 MW 

−140 MW 
−157 MW 

−296 MW 
−294 MW 

−277 MW 
−293 MW 

 

 

B.11.7 Comparison to WWSIS 3 + 5 Reserve Rule 
 

The Western Wind and Solar Integration Study (WWSIS, Phase 1) study developed simple BR 

rules that could be used by system operators to manage increasing amounts of variable 

generation. Because of data limitations at the time of that study, the reserve rules were developed 

and validated with wind and load data but not with PV. The simple rule suggests operators set 

the balancing reserves to 3% of the scheduled load plus 5% of the scheduled wind and solar in 

each hour (the 3 + 5 rule). 

 

The CPS2 score using this simple rule is almost exactly the same as the CPS2 score from the 

low-PV case BR rules developed here (Table B-9). The BR requirements are similar, although 

the maximum reserve requirement in the up and down direction with the simple 3 + 5 rule is 

greater than the maximum reserve required with the rules developed here. This suggests that the 

3 + 5 rule is a reasonable starting point, even for a case with PV, but more advanced reserve 

rules can allow the utility to operate with less BR and the same level of reliability. 
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Table B-9.  BR Sensitivity Results: WWSIS Rule 

Metric Methodology 

 
Net Load 

(2005) 

CPS2 Low PV 

WWSIS 
 

95.83% 

95.85% 

Average BR up Low PV 

WWSIS 
 

171 MW 

170 MW 

Maximum BR up Low PV 

WWSIS 
 

278 MW 

340 MW 

Minimum BR from spinning 
resources 

Low PV 

WWSIS 
 

264 MW 

277 MW 

Maximum BR down Low PV 

WWSIS 

−294 MW 

−340 MW 

 

 

B.11.8 Summary of Sensitivity Studies 
 

The primary findings from this sensitivity analysis are detailed in Table B-10. 

 

 
Table B-10.  Summary of BR Sensitivity Results 

 
Sensitivity Case Primary Findings 

Imperfect foresight in 
developing BR rules 

The 2004 deviations are used to develop BR rules that are tested using 
2005 data. This extra precaution in the methodology led to only a modest 
difference relative to a case in which perfect foresight was instead 
assumed. 

 

Use of 2.5th and 97.5th 
percentiles 

The choice of the percentiles of deviations used to establish BR rules led to 
a CPS2 score of about 96% for the net load. A higher CPS2 score of more 
than 98% could be achieved by increasing the percentiles to the 1st and 
99th. This would increase the BR by at most about 90MW. A large portion 
of this increased BR could be met with non-spinning resources. 

 

5-min time constant on 
smoothing filter  

The deviations were filtered such that not all deviations were met by 
deployment of BR. The CPS2 score would not be much higher had this 
filter been removed (meaning that BR would need to chase more small 
deviations without increasing reliability as measured by the NERC 
balancing standards). The time constant of the filter could even be 
increased to 10 min without significantly degrading the CPS2 performance. 
Overall, the CPS2 results are not sensitive to the choice of this parameter.  

 

10-min time to full 
deployment of BR  

The CPS2 score can be improved if BR can be fully deployed in less than 
10 min without increasing the BR requirement. This appears to be a 
promising approach to increasing the CPS2 performance above 96% with 
PV and wind. Decreasing the rate of deployment of BR, on the other hand, 
would significantly degrade the CPS2 performance.  
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Table B-10.  (Cont.) 

 
Sensitivity Case Primary Findings 

30-min schedule lead time Because HA schedules for wind and PV are based on persistence 
forecasting, scheduling close to the start of the operating hour decreases 
deviations. Decreasing or increasing the lead time is found to change the 
maximum BR requirements by less than about +/−20 MW, with the shorter 
lead time reducing BR up requirements. The overall impact on CSP2 
performance of a shorter or longer lead time is minor.  

 

10 min ramps at the start 
and end of the operating 
hour 

WECC practices are based on 10-min ramps. Decreasing the duration of 
these ramps would increase the BR needs and lower CPS2 performance. 
In contrast, increasing the duration of the ramps increases CPS2 
performance and reduces BR requirements. Extending ramps to 30 min 
prior to the start of the operating hour (and setting schedules 50 min prior 
to the start of the operating hour) shows clear benefits relative to 10-min 
ramps.  

 

WWSIS 3 + 5 rule Using the 3 + 5 reserve rule developed in the WWSIS study provides 
sufficient BR to maintain a similar CPS2 score, as was found with this more 
detailed approach. This provides validation that the 3 + 5 rule can be an 
effective rule of thumb for a utility with 9% of its energy from PV and 5% of 
its energy from wind. The peak reserve requirements will slightly exceed 
the peak reserve requirements that would be estimated with a more 
detailed approach.  

 

 

B.12 NERC CPS1 Performance 
 

In addition to CPS2, there are two other NERC balancing standards that balancing areas must 

consider: Disturbance Control Standard (DCS) and Control Performance Standard 1 (CPS1). 

 

DCS ensures that a system can recover from a large contingency event, such as a sudden forced 

outage of a large conventional power plant. In this study we assume that WECC contingency 

reserve requirements are adequate to meet DCS. These contingency reserves are included in the 

model constraints with the assumption that they cannot be used to balance the system under 

normal operating conditions. The contingency reserves therefore must always be met with or 

without PV. We do not treat DCS any further in this study. 

 

CPS1, like CPS2, is based on the ACE, but determination of the actual score depends on how 

well correlated a BA’s ACE is with system-wide frequency deviations (or frequency error). 

Similar to CPS2, a higher CPS1 score is desired as it indicates a better performing BA. If the 

ACE at a BA contributes to worsening system-wide frequency errors, then the CPS1 score is 

lowered. On the other hand, if the ACE is in the direction such that it can reduce system-wide 

frequency errors, the CPS1 score increases. 

 

Because we do not model system-wide frequency, it is not possible to directly calculate the CPS1 

score. We can do a few simple calculations to demonstrate that the CPS1 score with and without 

wind and PV should not change significantly with the increase in BR. To do this, we first 

simplify the CPS1 calculation and then develop representative parameter value estimates to come 

up with a ballpark estimate of the CPS1 score. 
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CPS1 can be calculated by using the following formula, based on the assumption that ACE is 

calculated on a 1-min average and the BA frequency bias, B, is constant. NERC CPS1 

compliance requires that CPS1 remain above 100 over a 12-month rolling average. 

 

 

         (  
 

       
  [      ]) 

Where 

 

 B is the frequency bias of the utility (assumed to be about −72.6 MW/0.1Hz for APS). 

 

    is the target RMS of the 1-min interconnection frequency error (assumed to be 

22.8 mHz for WECC). 

 

    is the 1-min average frequency deviation from the scheduled frequency within the 

interconnection (or the frequency error). 

 

   is the expectation operator or average over a rolling 12-month period.  

 

If we assume that the average of the ACE over 12 months is zero and that the frequency error 

over 12 months is also zero, then it is possible to reduce the CPS1 score calculation down to 

terms related to the standard deviation of the ACE and frequency error: 

 

 

         (    (          )) 
Where 

 

 k is equal to 
 

       
   , or about 2.65/MW-Hz for APS. 

 

      is the standard deviation of the ACE.  

 

     is the standard deviation of the frequency error.  

 

   is the correlation between the frequency error of the interconnection and the ACE for 

the BA. 

 

With this simplification it is clear that the CPS1 performance depends on the variability of the 

ACE and the correlation of ACE with system-wide frequency error. If the ACE and frequency 

error are perfectly uncorrelated, the CPS1 score will be 200 and in compliance with the NERC 

standard. 

 

On the other hand, if there is some positive correlation between ACE and frequency errors, then 

the CPS1 score will be less than 200 and possibly less than 100, indicating the BA is out of 

compliance. 
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Statistics from WECC indicate that during the period of 2003 to 2009, the standard deviation of 

the frequency error was roughly 10mHz and that many BAs had a CPS1 score of about 180. 

Based on the ACE from the load alone in the low-PV case, the standard deviation of the ACE 

was about 29.4 MW. Using this information, APS would have achieved a CPS1 score for the 

load alone of about 180 if the correlation of the ACE and the frequency error were roughly 0.25. 

 

In the low-PV case, the standard deviation of the ACE for the load-wind and the net load actually 

decreases to 24.5 MW and 27.7 MW, respectively. Assuming the correlation of ACE and the 

frequency error remained roughly 0.25 would lead to a CPS1 score of 184 and 182 for the load-

wind and net load, respectively. In all cases the BA would be well within compliance with CPS1. 

Furthermore, the correlation could increase to 0.68 and 0.60 before the CPS1 score would drop 

to 100 for the load-wind and net load, respectively. 

 

Based on this analysis, we assume that compliance with CPS1 should not be a problem for the 

BA as long as it remains in compliance with CPS2 in the various scenarios we investigate herein. 

 

 

B.13 Comparison to Other Operating Reserve Methods  
 

The approach used in this study for estimating balancing reserves builds on approaches 

developed in previous studies or employed by system operators currently managing variable 

generation, though it does not always match the approaches in these previous studies. As there is 

no standard method for estimating balancing reserve requirements, we highlight some of the 

differences in Table B-11. 

 

 
Table B-11.  Overview of Operating Reserve Methods  

 
Region/Utility Citation Important Differences 

CAISO, NV 
Energy 

Makarov et al. 
2009; Navigant 
Consulting et al. 
2011 (PNNL 
method) 

The PNNL method is similar to our approach except it separately 
quantifies load following and regulation reserves (we quantify only the 
balancing reserves that need to be held in the HA and are deployed in RT 
via a combination of the RT desk and transmission system operators); the 
NV Energy study assumed perfect forecasting in the HA (we use a 30-min 
persistence-of-cloudiness forecast); the CAISO study assumed that HA 
forecast errors scaled proportionally to wind capacity and selected errors 
from a truncated normal distribution. 

 

Bonneville 
Power 
Administration 

BPA 2009 BPA separately quantifies following reserve and regulation reserve (we 
quantify only a single balancing reserve amount that should be held in the 
HA and deployed in RT through a combination of the RT desk and system 
operators). BPA picks a single reserve quantity and holds in it all hours of 
the year (we dynamically set balancing reserves based on system 
conditions). BPA uses a 1-hr persistence forecast to set HA schedules 
(they also examine a 2-hr and 30-min persistence forecast in a sensitivity 
case; we assume 30-min persistence of cloudiness in setting HA 
schedules).  
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Table B-11.  (Cont.)  

 
Region/Utility Citation Important Differences 

Eastern 
Interconnection 

EnerNex Corp. 
2010 (EWITS) 

The EWITS method combines short-term 10-min wind forecast errors with 
load variability to establish a regulation (short-term) estimate. This reserve 
requirement is added to one standard deviation of the HA wind forecast 
error (regulation, next hour wind forecast error) to establish the additional 
spinning reserve requirement. Two standard deviations of the HA wind 
forecast error are then added as non-spinning reserves. The standard 
deviations are a function of the wind production level (similar to the 
approach used in this study). 

 

WestConnect  GE Energy 
2010 (WWSIS) 

WWSIS adds regulation reserves based on three standard deviations of 
10-min wind variability (we consider deviations from the HA schedule). 
From these general rules WWSIS developed a rule of thumb called the 3 
+5 rule: reserves should be set to 3% of the load plus 5% of the hourly 
average wind.  

 

ERCOT ERCOT 2011 The ERCOT regulation requirement is based on the observed 98.8th 
percentile of 5-min net load (load-wind) changes and deployment of 
regulation by hour of the day (we use deviations from HA schedules). The 
amount of regulation by hour is set to provide adequate regulation 
capability 98.8% of the time. ERCOT sets the DA non-spinning reserves 
plus regulation requirement to meet 95th percentile of observed DA 
forecast error (we do not increase the balancing reserves in the DA; the 
requirement is the same in the DA and HA). 

 

Southwest 
Power Pool 

CRA 2010 CRA uses the 5th and 95th percentile of 10-min wind changes along with 
load to establish a regulation reserve requirement (we use deviations from 
HA schedules).  

 

APS Black & Veatch 
2012 

The Black & Veatch study estimates regulation reserves for daylight hours 
required to meet a target CPS2 score based on 10-min load and PV 
deviations from HA schedules (the study does not include 10-min ramps 
before and after the start of the operating hour, and uses 70-min 
persistence to set the schedules). The study does not include wind 
variability in the assessment of reserves. One other difference is that the 
Black & Veatch study, because it focuses on daylight hours, varies 
regulation requirements for each hour of day in each month (we vary 
reserve requirements based on conditions of wind or solar).  

 

 

B.14 References 
 

Black & Veatch, 2012, Integrated Photovoltaic (PV) Integration Cost Study, prepared for 

Arizona Public Service Company, Nov. 

 

BPA (Bonneville Power Administration), 2009, 2010 BPA Rate Case Wholesale Power Rate 

Initial Proposal: Generation Inputs Study and Study Documentation [http://www.bpa.gov/ 

corporate/ratecase/2008/2010_BPA_Rate_Case/docs/WP-10-E-BPA-08.pdf]. 

 

CRA (Charles River Associates), 2010, SPP WITF Wind Integration Study, prepared for 

Southwest Power Pool, Little Rock, Ark. [http://www.spp.org/publications/2010.zip]. 

 



Integrating Solar PV into Utility System Operations 

107 

ERCOT (Electricity Reliability Council of Texas), 2011, 2011–2012 ERCOT Methodologies for 

Determining Ancillary Service Requirements, VG Operating Reserve Requirements, Western 

Electricity Coordinating Council, Salt Lake City, Utah [http://www.wecc.biz/committees/ 

StandingCommittees/JGC/VGS/OWG/ActivityO1]. 

 

EnerNex Corp., 2010, Eastern Wind Integration and Transmission Study, National Renewable 

Energy Laboratory, Golden Colo. [http://www.nrel.gov/wind/systemsintegration/ 

pdfs/2010/ewits_final_report.pdf]. 

 

GE Energy, 2010, Western Wind and Solar Integration Study, National Renewable Energy 

Laboratory, Golden, Colo. [http://www.nrel.gov/wind/systemsintegration/wwsis.html]. 

 

Makarov, Y. V, C. Loutan, J. Ma, and P. de Mello, 2009, “Operational Impacts of Wind 

Generation on California Power Systems,” IEEE Transactions on Power Systems 24(2):1039–

1050. 

 

Navigant Consulting, Sandia National Laboratories, Pacific Northwest National Laboratories, 

and NV Energy, 2011, Large-scale Solar Integration Study, NV Energy. Las Vegas, Nev. 

[http://www.navigant.com/insights/library/energy/large-scale_pv_integration_study/]. 

 

  



Integrating Solar PV into Utility System Operations 

108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

  



Integrating Solar PV into Utility System Operations 

109 

Appendix C DA/HA Commitment and Dispatch Model 
Formulation 

 

The unit commitment and economic dispatch (UC/ED) model used in this analysis is a revised 

version of the model presented in Wang et al. (2011), Zhou et al. (2013), and Botterud et al. 

(2013). The model was expanded to include a representation of solar PV as well as balancing-

down reserves. 

 

The UC problem schedules the states of a set of available generator units in response to 

forecasted demand and renewable energy to minimize production cost. The ED problem is then 

used to determine the scheduled generation of a set of committed units, that is, the ED variables, 

in response to updated estimates of demand, so that the production cost is minimized for the 

realized demand. In general, both models are solved on a rolling basis in order to continually 

ensure that supply can meet demand over time. The UC problem is solved prior to the actual 

production based on imperfect demand and renewable energy forecasts, because of the minimum 

time required for every start-up and shutdown of the thermal generators. The ED problem is 

solved very close to the actual production when the demand forecast is more precise, to control 

the RT quantity produced to meet the demand. The UC and ED problems essentially use the 

same optimization model, but the commitment decision variables in the ED model are fixed. In 

the current formulation, the model has an hourly time resolution and the optimization is done 

over a 24-hr time period. The main equations in the model are outlined below. 

First, we introduce the following general system parameters.        is the number of generator 

units in the system.           is the number of segments of energy blocks. Different generators 

may have different fuel consumption curves, which are usually nonlinear. To reduce the 

computational complexity, we discretize unit efficiency curves into energy blocks, assuming a 

linear production cost increase in energy output within the same block.        is the number of 

hours for the optimization, assumed to be 24 hr in the case study section. Based on the above 

parameters, we define the set of units in the power utility system   {          }, the set of 

energy blocks in each of the generators   {             }, the set of hours in the simulation 

rolling horizon   {          }. 
 

 

C.1 Operating Cost and Objective Functions 
 

The operating cost includes production cost,     (   ), the penalty cost for any unmet demand, 

    ( )  and operating reserves,     ( ), start-up cost,    (   ), and shutdown costs,    (   )   
Specifically, 

 

   (   )     ( )   (   )  ∑  (   )       (     )

 

 

 

where    ( ) is the no-load cost of unit i;  (   ) is the schedule states of unit i at time t; 

  (   ) is the k
th

 step segment of the marginal cost function of unit i, and      (       ) is the 

amount of generation on the k
th

 step segment at time t for unit i.  
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    ( )           ( ) 
 

    ( )       (     ( )       ( )) 
 

where      and      are the penalties of unmet energy and reserve, respectively;     ( ) is 

the amount of unmet energy at time t,      ( ) and      ( ) are the amount of unmet upward 

and downward reserve.  

 

Start-up costs,    (   ), refer to costs of either warm or cold start-up, depending on how long the 

generator has been shut down. Shut-down costs are set to zero in this analysis. 

 

For detailed representation of these costs and corresponding constraints, we refer to Wang et al. 

(2011), Zhou et al. (2013), and Botterud et al. (2013). 

 

The objective function is to minimize the total operating cost, that is, 

 

    ∑∑    (   )

  

 ∑ 

 

[    ( )      ( )]  ∑∑[   (   )     (   )]

  

 

 

subject to the constraints introduced as follows. 

 

 

C.2 Demand and Supply Balance Constraints on Energy and 
Reserve 

 

Let  (   ) the generation of unit i at time t,   ( ) the solar power supply,   ( ) the wind power 

supply,    (   )/   (   ) the amount of upward/downward reserve provided by unit i at time t, 

   ( )/  ( )are the amount of upward/downward reserve demand system wide at time t. 

 

The demand balance requires the sum of the total power generation, the utilized solar and wind 

energy, and the amount of load not served equals the energy demand,   , that is, 

 

∑ (   )

 

   ( )    ( )       ( )   ( )    

 

The reserve balance requires the sum of the total reserve from thermal generators and the reserve 

not served to equal    ( )  and   ( )  respectively, that is, 

 

∑   (   )

 

      ( )     ( ) ∑    (   )

 

      ( )     ( )    
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For renewable supply, let  ( )/  ( ) be available power supply from wind/solar at time t, then, 

 

 ( )    ( ); 
 

 ( )    ( )  
 

The difference is the curtailment of wind/solar power. 

 

 

C.3 The UC/ED Constraints 
 

The UC constraints are used to define the following UC variables:  (   ) is the binary (0/1) 

variable used to denote the state of the generator unit;  (   )/ (   ) is the 0/1 start-up/shut-down 

action indicator. 

 

 (     )   (   )       
 

   (     )   (   )       
 

 (   )   (     )   (   )   (   )       
 

Generator power output is modeled with minimum and maximum output levels,      ( ) and 

     ( ). We use  (   ) to denote the size of the block, and  (     )    to denote the power 

output at block k for generator i at time t, which shall not exceed the size of the block, that is, 

 

 (     )   (   )         . 
 

For the ED decision,  (   )    is the power output dispatched from generation unit i at time t, 

which is the sum of the minimum power output when the unit is turned on and the cumulative 

block outputs, that is, 

 

 (   )       ( ) (   )  ∑  (     )       . 
 

Let   (   ) be the maximum power for generator i at time t, and   (   ) be the respective 

minimum power, then 

 

     ( )   (   )    (   )   (   )    (   )       ( )       . 
 

The operating reserves are defined separately for upward reserve and downward reserve. The 

upward operating reserve supplied by a generator,    (   )   , is the available unused capacity 

of generator i at time t that can be fully deployed in a short time frame (default assumption is 10 

min), and the downward reserve supplied by a generator   (   )     is the active capacity of 

generator i at time t that can be fully reduced within the same short time frame. The operating 

reserve balance for a generator requires the following: 

 

  (   )     (   )   (   )       
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 (   )     (   )    (   )       
 

   (   )                    ( )   (   ). 
 

where                is the required response time and    ( ) is the speed that unit i can 

ramp up in unit time period. 

 

The generators are dispatched in real time to meet demand variations. The rate that the generator 

can increase its power output is called ramp-up rate, and the rate that the generator can decrease 

its power output is called ramp-down rate. The ramp-up/down constraints are as follows: 

 

   (   )   (     )       ( )   (     )        ( )   (   )       
 

   (   )   (     )       ( )   (     )         ( )   (   )       
 

 

where      ( )/     ( ) is the maximum hourly power output increase/decrease rate, and 

      ( )/      ( ) is the maximum hourly increase/decrease rate when a unit is started 

up/shut down. 

 

In power generation and other production scheduling, technological constraints and maintenance 

reasons force restrictions on the minimum number of time periods that a machine must stay 

active once turned on, and stay inactive once turned off, which are commonly referred to as 

minimum-up/minimum-down constraints. Because there are fixed costs associated with every 

start-up and shut-down, these constraints play an important role in UC. Rajan and Takriti (2005) 

characterize the polyhedral structure of a model representing these restrictions. We give the 

constraint formulation based on their study, which provides complete support for the facets of 

the minimum-up/down mixed integer programming polytope, reducing the computational 

complexity substantially. 

 

Given a discrete planning horizon with T periods, it is assumed that the minimum-up time for 

generator i is     and the minimum-down time for generator i is    . Then we have the 

following constraints:  

∑  (   )  

 

         

 (   )       

 

∑  (   )  

 

         

   (   )       
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Appendix D Additional HA Scheduling Results 
 

In the tables below we present more detailed scheduling results for the benchmark low-PV and 

high-PV scenarios as well as for one of the sensitivity cases with high PV penetration, that is, the 

case with constant nuclear output. 

 

 
Table D-1.  Summary of HA Energy Scheduling Results for the Low-PV Scenario (2027) 

 
 

Capacity of Plants  Energy 

Category 

 
Pmin 

[MW] 
Pmax 
[MW]  

Average if on 
[MW] 

Energy 
[GWh/yr] 

Energy 
[%] 

       

Nuclear (ST) 581 1,162  1,162 10,181 25.2 

Coal (ST) 957 1,982  1,783 15,550 38.5 

Gas (ST) 813 3,206  60 1 0.0 

Gas (CC) 1,398 2,945  2,114 8,387 20.7 

Gas (CT) 121 361  1,707 933 2.3 

Oil (CT) 35 70  N/A 0 0.0 

Solar PV 0 1,674  793 3,474 8.6 

Wind 0 630  220 1,893 4.7 

Total 3,906 12,030   40,418 100.0 

 

 
Table D-2.  Summary of HA Energy Scheduling Results for the High-PV (Const. Nucl.) 
Scenario (2027) 

 
 

Capacity of Plants 
 

Energy 

Category 

 
Pmin 

[MW] 
Pmax 

[MW] 

 
Average if on 

[MW] 
Energy 

[GWh/yr] 
Energy 

[%] 

       

Nuclear (ST) 581 1,162  1,162 10,181 25.2 

Coal (ST) 957 1,982  1,720 14,981 37.1 

Gas (ST) 813 3,206  68 1 0.0 

Gas (CC) 1,398 2,945  1,956 7,215 17.9 

Gas (CT) 121 361  1,524 728 1.8 

Oil (CT) 35 70  8 0 0.0 

Solar PV 0 2,974  1,320 5,786 14.3 

Wind 0 630  215 1,527 3.8 

Total 3,906 13,330   40,418 100.0 
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Table D-3.  Summary of HA Energy Scheduling Results for the High-PV (Flex. Nucl). 
Scenario (2027) 

 
 

Capacity of Plants  Energy 

 
Category 

 
Pmin 

[MW] 
Pmax 
[MW]  

Average if on 
[MW] 

Energy 
[GWh/yr] 

Energy 
[%] 

       

Nuclear (ST) 581 1,162  1,115 9,769 24.2 

Coal (ST) 957 1,982  1,713 14,586 36.1 

Gas (ST) 813 3,206  69 1 0.0 

Gas (CC) 1,398 2,945  1,941 6,866 17.0 

Gas (CT) 121 361  1,594 596 1.5 

Oil (CT) 35 70  NA 0 0.0 

Solar PV 0 2,974  1,548 6,784 16.8 

Wind 0 630  219 1,817 4.5 

Total 3,906 13,330   40,418 100.0 

 

 
Table D-4.  Summary of HA Reserve Scheduling Results for the Low-PV Scenario (2027) 

 
 

Capacity of Plants  Spinning Reserve up  Spinning Reserve down 

Category 

 
Pmin 

[MW] 
Pmax 
[MW]  

Average if on 
[MW] 

Reserve 
[GW-h/yr] 

Reserve 
[%]  

Average if on 
[MW] 

Reserve 
[GW-h/yr] 

Reserve 
[%] 

           

Nuclear (ST) 581 1,162  0 0 0.0  0 0 0.0 

Coal (ST) 957 1,982  107 934 28.0  175 1528 54.1 

Gas (ST) 813 3,206  39 1 0.0  0 0 0.0 

Gas (CC) 1,398 2,945  429 1863 55.8  324 1296 45.9 

Gas (CT) 121 361  767 542 16.2  8 2 0.1 

Oil (CT) 35 70  N/A 0 0.0  0 0 0.0 

Solar PV 0 1,674  0 0 0.0  0 0 0.0 

Wind 0 630  0 0 0.0  0 0 0.0 

Total 3,906 12,030   3,341 100.0   2,828 100.0 
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Table D-5.  Summary of HA Reserve Scheduling Results for the High-PV (Const. Nucl.) Scenario (2027) 

 
 

Capacity of Plants  Spinning Reserves up  Spinning Reserves down 

Category 

 
Pmin 

[MW] 
Pmax 

[MW]  
Average if on 

[MW] 
Reserve 

[GW-h/yr] 
Reserve 

[%]  
Average if on 

[MW] 
Reserve 

[GW-h/yr] 
Reserve 

[%] 

           

Nuclear (ST) 581 1,162  0 0 0.0  0 0 0.0 

Coal (ST) 957 1,982  154 1,340 33.9  209 1,824 60.8 

Gas (ST) 813 3,206  35 0 0.0  0 0 0.0 

Gas (CC) 1,398 2,945  499 2,060 52.1  312 1,173 39.1 

Gas (CT) 121 361  847 553 14.0  5 1 0.0 

Oil (CT) 35 70  8 0 0.0  0 0 0.0 

Solar PV 0 2,974  0 0 0.0  0 0 0.0 

Wind 0 630  0 0 0.0  0 0 0.0 

Total 3,906 13,330   3,953 100.0   2,997 100.0 

 

 
Table D-6.  Summary of HA Reserve Scheduling Results for the High-PV (Flex. Nucl.) Scenario (2027) 

 
 

Capacity of Plants  Spinning Reserves up  Spinning Reserves down 

Category 

 
Pmin 

[MW] 
Pmax 
[MW]  

Average if on 
[MW] 

Reserve 
[GW-h/yr] 

Reserve 
[%]  

Average if on 
[MW] 

Reserve 
[GW-h/yr] 

Reserve 
[%] 

           

Nuclear (ST) 581 1,162  43 373 9.3  225 1,968 33.1 

Coal (ST) 957 1,982  122 1,030 25.7  257 2,189 36.8 

Gas (ST) 813 3,206  39 0 0.0  0 0 0.0 

Gas (CC) 1,398 2,945  592 2,086 52.1  528 1,780 30.0 

Gas (CT) 121 361  855 517 12.9  14 2 0.0 

Oil (CT) 35 70  N/A 0 0.0  N/A 0 0.0 

Solar PV 0 2,974  0 0 0.0  0 0 0.0 

Wind 0 630  0 0 0.0  0 0 0.0 

Total 3,906 13,330   4,006 100.0   5,939 100.0 
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Appendix E Location of Wind and Solar Sites 

Table E-1.  Location and Configuration of PV Systems for APS (Sites 1–25 are used in the 2027 low-PV scenario, and 
sites 1–32 are used in the 2027 high-PV scenario) 

Site 
ID Site Name Location (in AZ) 

PV 
Technology 

Tilt 
(degrees) 

Capacity 
(MW ac) 

1 APS Solar and ASU 20 MW Tempe Fixed 30 24.6 

2 Small Gen RFP 2: Saddle Mountain 2013 Near Tonopah SAT 0 13.1 

3 Small Gen RFP 1: Ajo 2011 Ajo Fixed 30 3.8 

4 Small Gen RFP 1: Prescott 2011 Prescott Near Airport Fixed 30 9.2 

5 Small Gen RFP: Badger Desert Sky 2013 355th Ave and Indian 
School 

SAT 0 13.8 

6 AZ Sun: Cotton Center 2011 and 
Small Gen RFP: Gillespie 2014 

North of Gila Bend SAT 0 17.3 

7 AZ Sun: Paloma 2011 North of Gila Bend Fixed 30 16.3 

8 AZ Sun: Hyder 2011 and 2013 Hyder SAT 0 28.5 

9 AZ Sun: YUMA Foothills 2013 Yuma SAT 0 36.1 

10 AZ Sun: Chino Valley 2012 Chino Valley SAT 0 18.9 

11 AZ Sun2: PV - Future Project 2014 and 
2015* 

West of Gila Bend SAT 0 80.2 

12 PV - Future Project 2014* West of Gila Bend Fixed 30 32 

13 PV: Future Project 2019* West of Gila Bend SAT 0 100 

14 PV: Future Project 2023* East of Yuma SAT 0 100 

15 PV: Future Project 2024* East of Yuma SAT 0 100 

16 DE Residential (Maricopa) NW Phoenix  Fixed 30 183.2 

17 DE Residential (Maricopa) SW Phoenix  Fixed 30 91.6 

18 DE Residential (Maricopa) SE Phoenix  Fixed 30 91.6 

19 DE Residential (Maricopa) NE Phoenix  Fixed 30 91.6 

20 DE Residential (Coconino) Flagstaff Fixed 30 114.5 

21 DE Commercial (Maricopa) NW Phoenix Fixed 0 162.56 

22 DE Commercial (Maricopa) SW Phoenix Fixed 0 81.28 

23 DE Commercial (Maricopa) SE Phoenix Fixed 0 81.28 

24 DE Commercial (Maricopa) NE Phoenix Fixed 0 81.28 

25 DE Commercial (Yavapai) Prescott  Fixed 0 101.6 

26 200 MW 30 percent project 1 Yuma - Gila Bend 
Corridor 

SAT 0 200 

27 200 MW 30 percent project 2 Yuma - Gila Bend 
Corridor 

SAT 0 200 

28 200 MW 30 percent project 3 Yuma - Gila Bend 
Corridor 

SAT 0 200 

29 200 MW 30 percent project 4 Yuma - Gila Bend 
Corridor 

SAT 0 200 

30 200 MW 30 percent project 5 Yuma - Gila Bend 
Corridor 

SAT 0 200 

31 200 MW 30 percent project 6 Yuma - Gila Bend 
Corridor 

SAT 0 200 

32 100 MW 30 percent project 1 Yuma - Gila Bend 
Corridor 

SAT 0 100 
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Table E-2.  Location of Expected APS Wind Sites (Sites 1–21 are used in both the 2027 low-PV and 
high-PV scenarios.) 

Site ID APS IRP Site Name 

 
WWSIS 
Site ID 

Geographic 
Location 

Capacity 
(MW ac) 

     
1 Aragonne Mesa 1 2773 Eastern NM 30 

2 Aragonne Mesa 2 2738 Eastern NM 30 

3 Aragonne Mesa 3 2739 Eastern NM 30 

4 High Lonesome 1 2087 Central NM 30 

5 High Lonesome 2 2149 Central NM 30 

6 High Lonesome 3 2133 Central NM 30 

7 Perrin Ranch 1 3577 Central N. AZ 30 

8 Perrin Ranch 2 5378 Central N. AZ 30 

9 Perrin Ranch 3 5455 Central N. AZ 30 

10 Wind Owned NM (2022) 1 2588 NM_EA WREZ 30 

11 Wind Owned NM (2022) 2 2587 NM_EA WREZ 30 

12 Wind Owned NM (2022) 3 2589 NM_EA WREZ 30 

13 Wind AZ (2025) 1 5051 AZ_NE WREZ 30 

14 Wind AZ (2025) 2 5052 AZ_NE WREZ 30 

15 Wind AZ (2025) 3 5053 AZ_NE WREZ 30 

16 Wind Owned AZ (2026) 1 5212 AZ_NE WREZ 30 

17 Wind Owned AZ (2026) 2 5213 AZ_NE WREZ 30 

18 Wind Owned AZ (2026) 3 5215 AZ_NE WREZ 30 

19 Wind NM (2027) 1 2525 NM_EA WREZ 30 

20 Wind NM (2027) 2 2526 NM_EA WREZ 30 

21 Wind NM (2027) 3 2527 NM_EA WREZ 30 
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